

PROJEKT:

V150-4.0/4.2 MW, Mk3E, WZ2GK2(S), 166 m

INHALT:

VORSTATIK FUNDAMENTPLATTE FÜR TIEFFUNDIERUNG

IND.:	DATUM:	ÄNDERUNG:	GER:	GEPRÜFT:	FREIGABE :
Α	14.05.2018	ERSTAUFLAGE	RGS	JSR	JSR
В	25.05.2018	BERICHT	RGS	JSR	JSR

VERFASSER:

AUFTRAGGEBER:

VESTAS ÖSTERREICH GmbH VORGARTENSTRASSE 206 B A - 1020 WIEN

DATUM:	PROJEKT:	PLANNUMMER:
25.05.2018	101021	VO-C-02-B

RESTRICTED

Projekt: Inhalt: Auftraggeber: V150-4.0/4.2 MW, Mk3E, WZ2GK2(S), 166 m VORSTATIK FÜR FUNDAMENTPLATTE VESTAS ÖSTERREICH GMBH

INHALT

1	ALLGEMEINES	2
2	UNTERLAGEN	. 2
	2.1 UNTERLAGEN ZUR WINDKRAFTANLAGE	
	FUNDAMENTPLATTE	
	AUFTRIEB	
5	PFAHLBEMESSUNG	. 3
6	MATERIALIEN	. 3
7	ÜBERSCHÜTTUNG	. 4
8	FUNDAMENTPLAN	. 5
9	FEDERSTEIFIGKEIT	. 7
10	NUMERISCHE RERECHNUNG	۵

RESTRICTED

2

Projekt: Inhalt: Auftraggeber: V150-4.0/4.2 MW, Mk3E, WZ2GK2(S), 166 m VORSTATIK FÜR FUNDAMENTPLATTE VESTAS ÖSTERREICH GMBH

1 ALLGEMEINES

Die Firma Vestas Österreich GmbH plant die Errichtung einer Windkraftanlage vom Typ V150-4.0/4.2 MW, Mk3E, WZ2GK2(S), 166 m mit einer Tieffundierung.

Gegenstand dieses Berichtes ist die statische Vordimensionierung der Fundamentplatte sowie die Stahlbetonbemessung der Pfähle für die Windkraftanlage V150-4.0/4.2 MW, Mk3E, WZ2GK2(S), 166 m.

Die Firma Vestas Österreich GmbH hat das Ziviltechnikerbüro Dipl.-Ing. Josef Schelmberger, Ingenieurkonsulent für Bauwesen mit Sitz in Wien, mit der Bemessung beauftragt.

2 UNTERLAGEN

2.1 UNTERLAGEN ZUR WINDKRAFTANLAGE

Für die Bemessung der Fundamente wurden die angegebenen "Foundation loads" des folgenden Dokuments verwendet:

CLASS T05
Document no.: 0071-9515 VER 01
Combine Foundation loads
V150-4.0/4.2 MW, Mk3E, WZ2GK2(S), 166 m
erstellt von Vestas Wind Systems A/S, Hedeager 44, DK-8200 Aarhus, Denmark am 2018-05-11.

Die Abmessungen des Ankerkorbes wurden folgender Zeichnung entnommen:

AC1.5 V150-4.0/4.2 MW, 166M MK3 DIBtS Drawing Number: 0072-5433 Version 0 2018-05-11 erstellt von Vestas.

T05 0075-3482 Ver 00 - Approved - Exported from DMS: 2018-05-28 by SEYAS

Projekt:V150-4.0/4.2 MW, Mk3E, WZ2GK2(S), 166 mInhalt:VORSTATIK FÜR FUNDAMENTPLATTEAuftraggeber:VESTAS ÖSTERREICH GMBH

2.2 NORMEN UND RICHTLINIEN

Folgende Normen wurden verwendet:

ÖNORM EN 1992-1-1 Eurocode 2: Bemessung und Konstruktion von Stahlbeton- und

Spannbetonbauwerken. Teil 1-2: Allgemeine Bemessungsregeln

und Regeln für den Hochbau.

ÖNORM EN 1997-1 Eurocode 7: Entwurf, Berechnung und Bemessung in der

Geotechnik. Teil 1: Allgemeine Regeln.

ÖNORM EN 1997-1-3 Eurocode 7: Entwurf, Berechnung und Bemessung in der

Geotechnik. Teil 1-3: Pfahlgründungen.

ÖVE/ÖNORM EN 61400-1: Windenergieanlagen. Teil 1: Auslegungsanforderungen.

Richtlinie Bohrpfähle: Fassung Juni 2013, erstellt von der Österreichischen Bautechnik

Vereinigung.

Richtlinie für Windenergieanlagen: Einwirkungen und Standsicherheitsnachweise für Turm

und Gründung, Heft 8, Fassung Oktober 2012 erstellt vom deutschem Institut für Bautechnik – DIBt – Berlin.

Die nationalen Anhänge zu den oben angeführten Normen wurden nicht angeführt, sind jedoch zu berücksichtigen.

3 FUNDAMENTPLATTE

Die Bemessung der Fundamentplatte erfolgte nach ÖRNOM EN 1992-1-1. Untersucht wurden die Lastfälle DLC 6.2 und DLC 1.4, wobei für den Lastfall DLC 6.2 ein Teilsicherheitsbeiwert von 1.10 und für den Lastfall DLC 1.4 ein Teilsicherheitsbeiwert von 1.35 angesetzt wurde.

4 AUFTRIEB

Für die Bemessung der Fundamentplatte wurde keine Auftriebswirkung berücksichtigt.

5 PFAHLBEMESSUNG

Für die Fundierung der Windkraftanlage werden SOB-Pfähle mit 65 cm Durchmesser verwendet. Die Bemessung der inneren Tragsicherheit erfolgte nach ÖNORM EN 1992-1-1.

6 MATERIALIEN

Folgende Materialien wurden verwendet:

• Fundamentsockel: C50/60/XC3/XD2/XF1/XA1L/SB(A)

Fundamentplatte: C35/45/XC3/XD2/XF1/XA1L

T05 0075-3482 Ver 00 - Approved - Exported from DMS: 2018-05-28 by SEYAS

Projekt: Inhalt: Auftraggeber: V150-4.0/4.2 MW, Mk3E, WZ2GK2(S), 166 m VORSTATIK FÜR FUNDAMENTPLATTE VESTAS ÖSTERREICH GMBH

Pfähle: C25/30/XC3 TB1

Baustahl: BST 550B
 Betondeckung Fundamentplatte: 5 cm
 Betondeckung Pfähle: 8 cm

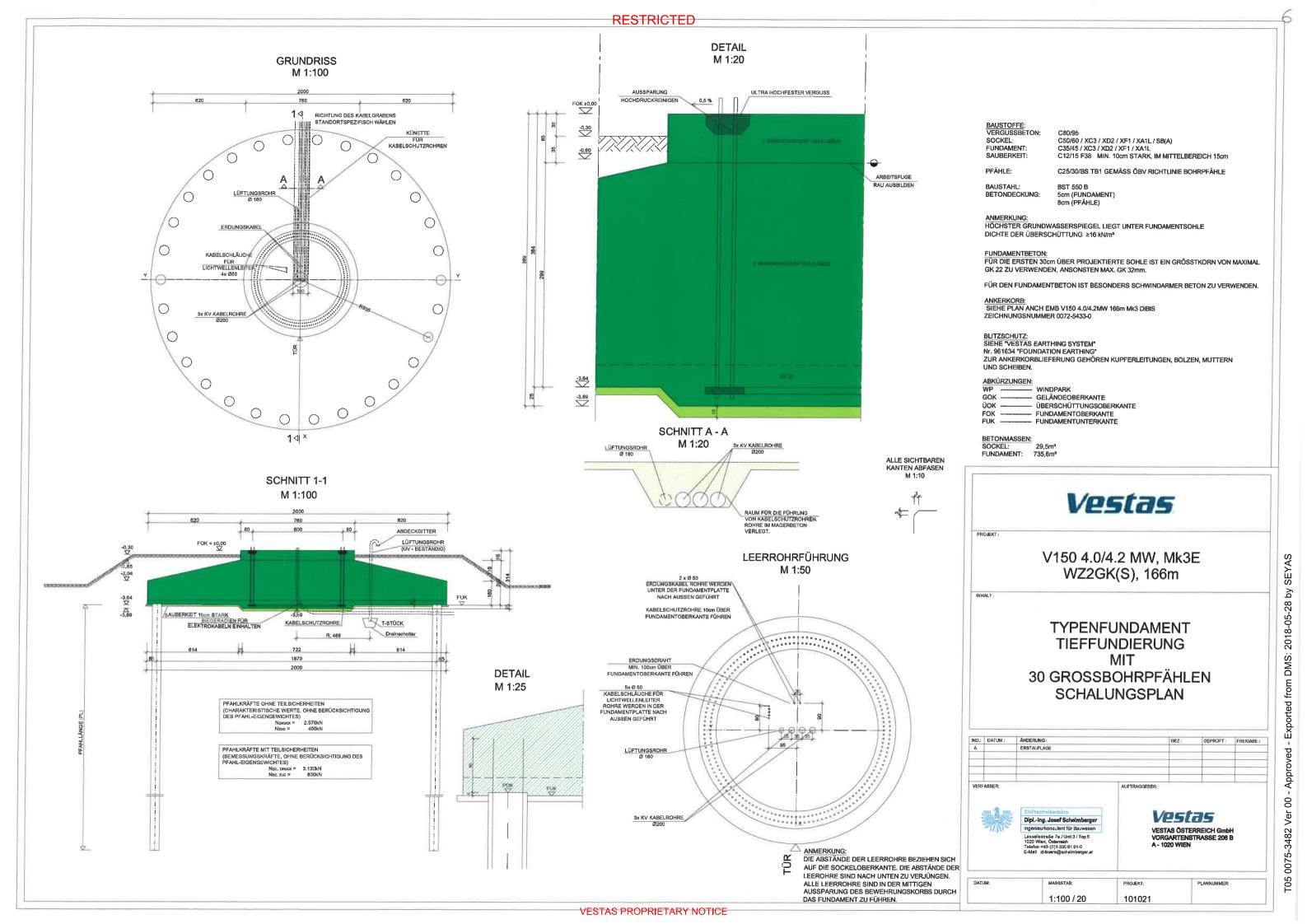
Bezüglich Expositionsklassen können für den Einzelfall darüber hinausgehende, an den spezifischen Standort angepasste, zusätzliche Anforderungen definiert werden.

7 ÜBERSCHÜTTUNG

Die Überschüttung des Fundamentes wurde mit den Wichten 16,0 kN/m³ und 18,0 kN/m³ angenommen.

Wien am, 22.05.2018

Dipl.-Ing. Josef Schelmberger Ingenieurkonsulent für Bauwesen


RESTRICTED

5

Projekt: Inhalt: V150-4.0/4.2 MW, Mk3E, WZ2GK2(S), 166 m VORSTATIK FÜR FUNDAMENTPLATTE VESTAS ÖSTERREICH GMBH

Auftraggeber:

8 FUNDAMENTPLAN

RESTRICTED

-

Projekt: Inhalt: <u>Auftraggeber:</u> V150-4.0/4.2 MW, Mk3E, WZ2GK2(S), 166 m VORSTATIK FÜR FUNDAMENTPLATTE VESTAS ÖSTERREICH GMBH

9 FEDERSTEIFIGKEIT

Ingenieurkonsulent für Bauwesen

Anlage:

V150-4.0/4.2 MW Mk3E, WZ2GK2(S), 166m

Fundamenttyp:

SOB Pfähle Durchmesser 65cm

Geschäftszahl:

101021

Datum:

14.05.2018

Pfahldurchmesser:

0,65

[m]

		EIFIGKEITEN		
Höhe	Tiefe u GOK	Pfahltiefe	E _{oed}	K _{s,h,k}
[m]	[m]	[m]	[KN/m ²]	[kN/m]
99,5	0,5	0,0	2 000	2 000
98,5	1,5	1,0	2 000	2 000
97,5	2,5	2,0	2 000	2 000
96,5	3,5	3,0	2 000	2 000
95,5	4,5	4,0	2 000	2 000
94,5	5,5	5,0	5 000	5 000
93,5	6,5	6,0	5 000	5 000
92,5	7,5	7,0	5 000	5 000
91,5	8,5	8,0	5 000	5 000
90,5	9,5	9,0	5 000	5 000
89,5	10,5	10,0	10 000	10 000
88,5	11,5	11,0	10 000	10 000
87,5	12,5	12,0	10 000	10 000
86,5	13,5	13,0	10 000	10 000
85,5	14,5	14,0	10 000	10 000
84,5	15,5	15,0	15 000	15 000
83,5	16,5	16,0	15 000	15 000
82,5	17,5	17,0	15 000	15 000
81,5	18,5	18,0	15 000	15 000
80,5	19,5	19,0	15 000	15 000
79,5	20,5	20,0	15 000	15 000
78,5	21,5	21,0	15 000	15 000
77,5	22,5	22,0	15 000	15 000
76,5	23,5	23,0	15 000	15 000
75,5	24,5	24,0	15 000	15 000

RESTRICTED

V150-4.0/4.2 MW, Mk3E, WZ2GK2(S), 166 m VORSTATIK FÜR FUNDAMENTPLATTE

Projekt: Inhalt: Auftraggeber:

VESTAS ÖSTERREICH GMBH

10 NUMERISCHE BERECHNUNG

Lassallestraße 7a / Unit 3 / Top 6, 1020 Wien

Tel: 1/3306191-0 zt-buero@schelmberger.at

MODELL

Datum: 14.05.2018

Projekt: 101021 Modell: V150-4.0/4.2 MW, Mk3E

Inhalt

	Modell-Basisangaben	1	Grafik	Globale Verformungen u, LK8: DLC 6.2_oAT_Gebrauchstaugl g18, In Z-Richtung	14
1	Modell		Grafik	Schnittgrößen N, LK1: DLC 6.2_oAT_Traglast_ g16, Isometrie	15
1.3	Materialien	1	Grafik	Schnittgrößen N, LK6: DLC 6.2_oAT_Traglast_g18, Isometrie	15
Grafik	Modell, Isometrie	2	Grafik	Schnittgrößen N, LK2: DLC 1.4_oAT_Traglast_g16, Isometrie	16
1.4	Flächen	2	Grafik	Schnittgrößen N, LK7: DLC 1.4_oAT_Traglast_ g18, Isometrie	16
1.7	Knotenlager	4	Grafik	Schnittgrößen N, LK3: DLC 6.2_oAT_Gebrauchstaugl g16, Isometrie	17
1.7.2	Knotenlager - Federn	4	Grafik	Schnittgrößen N, LK8: DLC 6.2_oAT_Gebrauchstaugl g18, Isometrie	17
1.11	Veränderliche Dicken	5	Grafik	Schnittgrößen N, LK4: DLC 1.4_oAT_Gebrauchstaugl g16, Isometrie	18
1.13	Querschnitte	5	Grafik	Schnittgrößen N, LK9: DLC 1.4_oAT_Gebrauchstaugl g18, Isometrie	18
1.21	Stabsätze	5	Grafik	Schnittgrößen N, LK5: SL_oAT_Gebrauchstaugl g16, Isometrie	19
2	Lastfälle und Kombinationen		Grafik	Schnittgrößen N, LK10: SL_oAT_Gebrauchstaugl g18, Isometrie	19
2.1	Lastfälle	6		RF-BETON Flächen	
2.1.1	Lastfälle - Berechnungsparameter	6		FA1 - Stahlbeton-Bernessung	
2.5	Lastkombinationen	6	1.1	Basisangaben	20
3	Lasten		1.2	Materialien	20
	LF1 - Eigen + Überschüttung g=16kN/m³ - 3.4	7	1.4	Bewehrungssatz Nr. 1 - Fundament	20
	Flächenlasten		2.1	Erforderliche Bewehrung Gesamt	20
Grafik	LF1 - LF1: Eigen + Überschüttung g=16kN/m³,	8	Grafik	RF-BETON Flächen FA1 - Erforderliche Bewehrung as,1,+z (unten), In Z-Richtung	21
	Isometrie		Grafik	RF-BETON Flächen FA1 - Erforderliche Bewehrung a _{s,1-z (oben)} , In Z-Richtung	22
	LF2 - Eigen + Überschüttung g=18kN/m³ - 3.4	9	Grafik	RF-BETON Flächen FA1 - Erforderliche Bewehrung a _{s,2+z(unlen)} , In Z-Richtung	23
	Flächenlasten		Grafik	RF-BETON Flächen FA1 - Erforderliche Bewehrung as 2-z (oben), In Z-Richtung	24
Grafik	LF2 - LF2; Eigen + Überschüttung g=18kN/m²,	10	Grafik	RF-BETON Flächen FA1 - Schubbewehrung a.w. in Z-Richtung	25
	Isometrie			RF-BETON Stäbe	
	LF3 - dlc 6.2 - 3.1 Knotenlasten -	- 11		FA1 - Stahlbetonbemessung von	
	Komponentenweise - Koordinatensystem			Stäben	
Grafik	LF3 - LF3: dic 6.2. Isometrie	11	1.1	Basisangaben	26
	LF4 - dic 1.4 - 3.1 Knotenlasten -	12	1.1	Einstellungen - Nichtlineare Berechnung	26
	Komponentenweise - Koordinatensystem			(Zustand II)	
Grafik	LF4 - LF4: dlc 1.4, Isometrie	12	1.2	Materialien	26
	LF5 - Prob1e-2 - 3.1 Knotenlasten -	13	1.3	Querschnitte	26
	Komponentenweise - Koordinatensystem		1.6	Bewehrungssatz Nr. 1 - Pfähle	26
Grafik	LF5 - LF5: Prob.:1e-2, Isometrie	13	3.1	Vorhandene Längsbewehrung	27
4	Ergebnisse - Lastfälle,		3.2	Vorhandene Bügelbewehrung	27
	Lastkombinationen				

■ Modell-Basisangaben

Allgemein	Modeliname	: 101021-VO-C-02-A_Tief-F_Ø2000_oAT
	Projektname	: 101021
	Modelityp	: 3D
	Positive Richtung der globalen Z-Achse	: Nach unten
	Klassifizierung der Lastfälle und	: Nach Norm: Ohne
	Kombinationen	Nationaler Anhang: Kein
Optionen	☐ RF-FORMFINDUNG - Ermittlung von Ausgangs-Gleichgewichtsformen für Membran- und Seilkonstruktionen	
	☐ RF-ZUSCHNITT	
	☐ Rohrleitungsanalyse	
	□ CQC-Regel anwenden	
	□ CAD/BIM-Modell emröglichen	
	Erdbeschleunigung	
	g	: 10.00 m/s ²

■ 1.3 Materialien

Mat.	Modul	Modul	Querdehnzahl	Spez. Gewicht	Wärmedehnz.	TeilsichBeiwert	Material-
Nr.	E [kN/cm²]	G [kN/cm²]	v [-]	γ [kN/m³]	α [1/°C]	ум [-]	Modell
1	Beton C35/45 EN 1992-1-1:2004/A1:2014 3400.00	1420.00	0.197	25.00	1.00E-05	1.00	Isotrop linear elastisch
2	Baustahl S 355 EN 10025-2:2004-11 21000.00	8100.00	0.296	0.00E+00	1.20E-05		Isotrop linear elastisch
3	Beton C25/30 EN 1992-1-1:2004/A1:2014 3100.00	1291.67	0.200	0.00E+00	1.00E-05	1.00	Isotrop linear elastisch
4	Beton C25/30 EN 1992-1-1:2004/A1:2014 3100.00	1291.67	0.200	25.00	1.00E-05	1.00	Isotrop linear elastisch

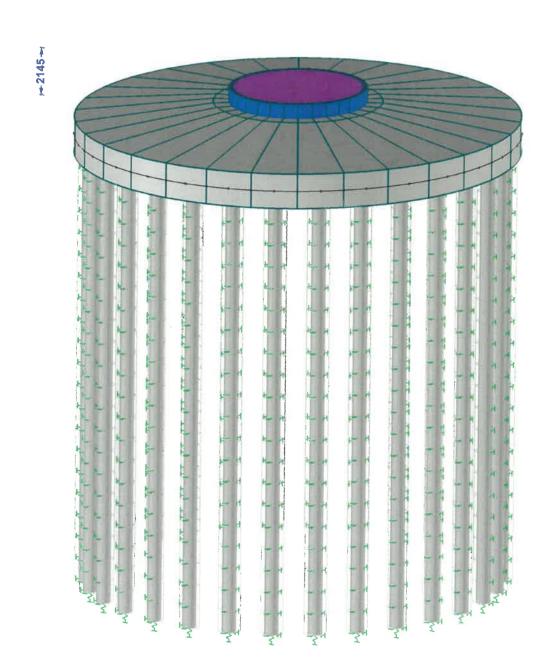
Lassallestraße 7a / Unit 3 / Top 6, 1020 Wien

Tel: 1/3306191-0 zt-buero@schelmberger.at

Seite: 2/28
Blatt: 1

MODELL

MODELL


Projekt: 101021

Modell

Modell: V150-4.0/4.2 MW, Mk3E

Isometrie

14.05.2018

-1	-4	⊢la	ach	nen

Fläche		Flächentyp		Mat. Dicke			Fläche	Gewicht
Nr.	Geometrie	Steifigkeit	Begrenzungslinien Nr.	Nr.	Тур	d [mm]	A [mm²]	G [kg]
1	Eben	Standard	480,1100,552,551,1158,479	1	Konstant	2990.0	1485850	11106.
2	Eben	Standard	553,554,1042,482,481,1100	1	Veränderlich		8958800	48980.
3	Eben	Standard	552,1101,572,555,1159,551	1	Konstant	2990.0	1485850	11106
4	Eben	Standard	573,574,1043,554,553,1101	1	Veränderlich		8958800	48980
5	Eben	Standard	572,1102,592,591,1160,555	1	Konstant	2990.0	1485850	11106.
6	Eben	Standard	593,594,1044,574,573,1102	1	Veränderlich		8958800	48980.
7	Eben	Standard	592,1103,612,611,1161,591	1	Konstant	2990.0	1485850	11106

Lassallestraße 7a / Unit 3 / Top 6, 1020 Wien

Tel: 1/3306191-0 zt-buero@schelmberger.at

Seite: 3/28
Blatt: 1

Projekt: 101021

Modell: V150-4.0/4.2 MW, Mk3E

um: 14.05.2018

12

■ 1.4 Flächen

	Geometrie Eben Eben Eben Eben Eben Eben	Standard Standard Standard Standard Standard	Begrenzungslinien Nr. 613,614,1045,594,593,1103 612,1104,632,631,1162,611	Nr. 1 1	Typ Veränderlich Konstant	d [mm]	A [mm²] 8958800 1485850	G [kg] 48 11
	Eben Eben Eben Eben	Standard Standard	612,1104,632,631,1162,611	1		2990.0		
	Eben Eben Eben	Standard		1	Konstant	2990.0	1485850	14
	Eben Eben							
	Eben	Standard	633,634,1046,614,613,1104	_ 1	Veränderlich		8958800	48
			632,1105,653,652,1163,631	1	Konstant	2990.0	1485850	11
	Fhen	Standard	654,655,1048,634,633,1105	1	Veränderlich		8958800	48
E E E E E E E E E E E E E E E E E E E		Standard	653,1106,674,673,1164,652	1	Konstant	2990.0	1485850	1:
E E E E E E E E E E E E E E E E E E E	Eben	Standard	675,676,1052,655,654,1106	1	Veränderlich		8958800	4
E E E E E E E E E E E E E E E E E E E	Eben	Standard	674,1107,695,694,1165,673	1	Konstant	2990.0	1485850	1
E E E E E E	Eben	Standard	696,697,1056,676,675,1107	1	Veränderlich		8958800	4
E E	Eben	Standard	695,1108,716,715,1166,694	1	Konstant	2990.0	1485850	1
E E	Eben	Standard	717,718,1060,697,696,1108	1	Veränderlich		8958800	4
E E	Eben	Standard	716,1109,737,736,1167,715	1	Konstant	2990.0	1485850	1
E E E E	Eben	Standard	738,739,1064,718,717,1109	1	Veränderlich		8958800	4
E E E E	Eben	Standard	737,1110,758,757,1168,736	1	Konstant	2990.0	1485850	1
E E E	Eben	Standard	759,760,1068,739,738,1110	1	Veränderlich	2000.0	8958800	4
E E E	Eben	Standard	758,1111,779,778,1169,757	1	Konstant	2990.0	1485850	i
E	Eben	Standard	780,781,1072,760,759,1111	1	Veränderlich	2550.0	8958800	4
E	Eben	Standard	779,1112,800,799,1170,778		Konstant	2990.0	1485850	1
E		Standard			Veränderlich	2990.0		
	Eben		801,802,1076,781,780,1112			2000.0	8958800	48
E.	Eben	Standard	800,1113,821,820,1171,799		Konstant	2990.0	1485850	1:
	Eben	Standard	822,823,1080,802,801,1113		Veränderlich		8958800	48
	Eben	Standard	821,1114,842,841,1172,820	1	Konstant	2990.0	1485850	11
	Eben	Standard	843,844,1084,823,822,1114	1	Veränderlich		8958800	48
	ben	Standard	842,1115,863,862,1173,841	1	Konstant	2990.0	1485850	1
	ben	Standard	864,865,1088,844,843,1115	1	Veränderlich		8958800	48
	Eben	Standard	863,1116,885,884,1174,862	1	Konstant	2990.0	1485850	1
	Eben	Standard	886,887,1092,865,864,1116	1	Veränderlich		8958800	4
	Eben	Standard	885,1117,910,909,1175,884	1	Konstant	2990.0	1485850	11
	Eben	Standard	911,912,1096,887,886,1117	1	Veränderlich	2990.0	8958800	48
	Eben Eben	Standard	910,1119,935,934,1176,909		Konstant	2990.0	1485850	11
						∠990.0		
	Eben	Standard	936,937,1118,912,911,1119	1	Veränderlich		8958800	48
	ben	Standard	935,1124,960,959,1177,934	1	Konstant	2990.0	1485850	11
	Eben	Standard	961,962,1123,937,936,1124	1	Veränderlich		8958800	48
E	Eben	Standard	960,1149,985,984,1178,959	1	Konstant	2990.0	1485850	11
E E	Eben	Standard	986,987,1128,962,961,1149	1	Veränderlich		8958800	48
E	Eben	Standard	985,1180,1010,1009,1182,984	1	Konstant	2990.0	1485850	11
	ben	Standard	1011,1012,1179,987,986,1180	1	Veränderlich		8958800	48
	ben	Standard	1010,1212,1189,1188,1214,1009	1	Konstant	2990.0	1485850	11
	ben	Standard	1190,1191,1211,1012,1011,1212	1	Veränderlich	2000.0	8958800	48
	ben	Standard	1189,1244,1221,1220,1246,1188	1 1	Konstant	2990.0	1485850	11
	ben	Standard	1222,1223,1243,1191,1190,1244	1	Veränderlich	2000.0	8958800	48
	ben	Standard	1221,1276,1253,1252,1278,1220	1	Konstant	2990.0	1485850	11
						2990.0		
	ben	Standard	1254,1255,1275,1223,1222,1276	1	Veränderlich	00000	8958800	48
	ben	Standard	1253,1308,1285,1284,1310,1252	1	Konstant	2990.0	1485850	11
	ben	Standard	1286,1287,1307,1255,1254,1308	1	Veränderlich		8958800	48
	ben	Standard	1285,1340,1317,1316,1342,1284	1	Konstant	2990.0	1485850	11
	ben	Standard	1318,1319,1339,1287,1286,1340	1	Veränderlich		8958800	48
E	ben	Standard	1317,1372,1349,1348,1374,1316	1	Konstant	2990.0	1485850	11
E	ben	Standard	1350,1351,1371,1319,1318,1372	1	Veränderlich		8958800	48
E	ben	Standard	1349,1404,1381,1380,1406,1348	1	Konstant	2990.0	1485850	11
	ben	Standard	1382,1383,1403,1351,1350,1404	1	Veränderlich		8958800	48
	ben	Standard	1381,1436,480,479,1438,1380	1	Konstant	2990.0	1485850	11
	ben	Standard	481,482,1435,1383,1382,1436	1	Veränderlich	2000.0	8958800	48
	Quadrangel	Standard	2,1183,1,1129	2	Konstant	200.0	1347610	40
				2				
	Quadrangel	Standard	3,1184,2,1130	2 2	Konstant	200.0 200.0	1347610	
	Quadrangel	Standard	4,1185,3,1131		Konstant		1347610	
	luadrangel	Standard	5,1186,4,1132	2	Konstant	200.0	1347610	
	luadrangel	Standard	6,1215,5,1133	2	Konstant	200.0	1347610	
	luadrangel	Standard	7,1216,6,1134	2	Konstant	200.0	1347610	
	luadrangel	Standard	8,1217,7,1135	2	Konstant	200.0	1347610	
	(uadrange)	Standard	9,1218,8,1136	2	Konstant	200.0	1347610	
Qı	luadrangel	Standard	10,1247,9,1137	2	Konstant	200.0	1347610	
	tuadrangel	Standard	11,1248,10,1138	2	Konstant	200.0	1347610	
Qı	luadrangel	Standard	12,1249,11,1139	2	Konstant	200.0	1347610	
	luadrangel	Standard	13,1250,12,1140	2	Konstant	200.0	1347610	
	tuadrangel	Standard	14,1279,13,1141	2	Konstant	200.0	1347610	
	tuadrangel	Standard	16,1280,14,1142	2	Konstant	200.0	1347610	
	uadrangel	Standard	17,1281,16,1143	2	Konstant	200.0	1347610	
	uadrangel	Standard	18,1282,17,1144	2	Konstant	200.0	1347610	
			19,1311,18,1145	2		200.0	1347610	
	uadrangel	Standard			Konstant			
	uadrangel	Standard	20,1312,19,1146	2	Konstant	200.0	1347610	
	uadrangel	Standard	21,1313,20,1147	2	Konstant	200.0	1347610	
	uadrangel	Standard	22,1314,21,1148	2	Konstant	200.0	1347610	
	uadrangel	Standard	23,1343,22,1150	2	Konstant	200.0	1347610	
	uadrangel	Standard	24,1344,23,1181	2	Konstant	200.0	1347610	
	uadrangel	Standard	25,1345,24,1213	2	Konstant	200.0	1347610	
	uadrangel	Standard	26,1346,25,1245	2	Konstant	200.0	1347610	
	uadrangel	Standard	27,1375,26,1277	2	Konstant	200.0	1347610	
		Standard	28,1376,27,1309	2		200.0	1347610	
	uadrangel			2	Konstant			
	uadrangel	Standard	29,1377,28,1341	2	Konstant	200.0	1347610	
	uadrangel	Standard	30,1378,29,1373	2	Konstant	200.0	1347610	
	uadrangel	Standard	31,1407,30,1405	2	Konstant	200.0	1347610	
Qu	uadrangel	Standard	1,1439,31,1437	2	Konstant	200.0	1347610	
	ben	Starr	1215-1218,1247-1250,1279-1282,1311-1314,	-	Konstant	_	28261400	

Lassallestraße 7a / Unit 3 / Top 6, 1020 Wien

Tel: 1/3306191-0 zt-buero@schelmberger.at

Seite: 4/28
Blatt: 1

MODELL

rojekt: 101021

Modell: V150-4.0/4.2 MW, Mk3E

Datum: 14.05.2018

■ 1.7 Knotenlager

ager			Stütze			Lagerung	bzw. Feder		
Nr.	Knoten Nr.	Achsensystem	in Z	u _X	Uy	UZ	φх	φγ	φz
1	651,667,684,701,722,740,758,776,794,812,830,848, 866,884,902,920,938,956,974,992,1010,1028,1046, 1064,1082,1100,1118,1136,1154,1172 -1 m	Global X,Y,Z		Feder	Feder				
2	652,668,685,702,723,741,759,777,795,813,831,849, 867,885,903,921,939,957,975,993,1011,1029,1047, 1065,1083,1101,1119,1137,1155,1173	Global X,Y,Z		Feder	Feder				
3	653,669,686,703,724,742,760,778,796,814,832,850, 868,886,904,922,940,958,976,994,1012,1030,1048, 1066,1084,1102,1120,1138,1156,1174	Global X,Y,Z		Feder	Feder				
4	654,670,687,704,725,743,761,779,797,815,833,851, 869,887,905,923,941,959,977,995,1013,1031,1049, 1067,1085,1103,1121,1139,1157,1175 4 m	Global X,Y,Z		Feder	Feder		G.		
5	655,671,688,705,726,744,762,780,798,816,834,852, 870,888,906,924,942,960,978,996,1014,1032,1050, 1068,1086,1104,1122,1140,1158,1176	Global X,Y,Z		Feder	Feder				
6	656,672,689,706,727,745,763,781,799,817,835,853, 871,889,907,925,943,961,979,997,1015,1033,1051, 1069,1087,1105,1123,1141,1159,1177 -6 m	Global X,Y,Z		Feder	Feder				
7	657,673,690,707,728,746,764,782,800,818,836,854, 872,890,908,926,944,962,980,998,1016,1034,1052, 1070,1088,1106,1124,1142,1160,1178	Global X,Y,Z	D	Feder	Feder				
8	-7 m 658,674,691,708,729,747,765,783,801,819,837,855, 873,891,909,927,945,963,981,999,1017,1035,1053, 1071,1089,1107,1125,1143,1161,1179	Global X,Y,Z		Feder	Feder		a		
9	-8 m 659,675,692,709,730,748,766,784,802,820,838,856, 874,892,910,928,946,964,982,1000,1018,1036,1054, 1072,1090,1108,1126,1144,1162,1180	Global X,Y,Z		Feder	Feder	0			
10	-9 m 660,676,693,710,731,749,767,785,803,821,839,857, 875,893,911,929,947,965,983,1001,1019,1037,1055, 1073,1091,1109,1127,1145,1163,1181	Global X,Y,Z		Feder	Feder				
11	-10 m 661,677,694,711,732,750,768,786,804,822,840,858, 876,894,912,930,948,966,984,1002,1020,1038,1056, 1074,1092,1110,1128,1146,1164,1182	Global X,Y,Z		Feder	Feder	0			
12	-11 m 662,678,695,712,733,751,769,787,805,823,841,859, 877,895,913,931,949,967,985,1003,1021,1039,1057, 1075,1093,1111,1129,1147,1165,1183	Global X,Y,Z		Feder	Feder				
13	-12 m 63,679,696,713,734,752,770,788,805,824,842,860, 878,896,914,932,950,968,986,1004,1022,1040,1058, 1076,1094,1112,1130,1148,1166,1184	Global X,Y,Z		Feder	Feder				
14	-13 m 664,680,697,714,735,753,771,789,807,825,843,861, 879,897,915,933,951,969,987,1005,1023,1041,1059, 1077,1095,1113,1131,1149,1167,1185	Global X,Y,Z	ū	Feder	Feder	0		u	
15	-14 m 665,681,698,715,736,754,772,790,808,826,844,862, 880,898,916,934,952,970,988,1006,1024,1042,1060, 1078,1096,1114,1132,1150,1168,1186	Global X,Y,Z		Feder	Feder	0	0		
6	-15 m 1544,1547,1550,1553,1556,1559,1568,1572,1576,1580, 1584,1588,1604,1609,1614,1619,1640,1646,1670,1677, 1704,1733,1786,1820,1856,1869,1882,1895,1908,1921	Global X,Y,Z		Feder	Feder				
17	-16m 1545,1548,1551,1554,1557,1560,1569,1573,1577,1581, 1585,1600,1605,1610,1615,1620,1641,1647,1671,1678, 1705,1734,1787,1821,1857,1870,1883,1896,1909,1922	Global X,Y,Z	ū	Feder	Feder				
18	-1/m 1546,1549,1552,1555,1558,1561,1570,1574,1578,1582, 1586,1601,1606,1611,1616,1636,1642,1665,1672,1698, 1726,1735,1788,1845,1858,1871,1884,1897,1910,1923 -18m	Global X,Y,Z		Feder	Feder		a	O	
19	1988-2017	Global X,Y,Z		Feder	Feder				⊠
20	-19m 649,666,683,700,717,739,757,775,793,811,829,847, 865,883,901,919,937,955,973,991,1009,1027,1045, 1063,1081,1099,1117,1135,1153,1171	Global X,Y,Z		Feder	Feder	Feder			

■ 1.7.2 Knotenlager - Federn

Lager			Wegfeder [kN/m]		Drehfeder [kNm/rad]		
Nr.	Knoten Nr.	C _{u,X'}	C _{u,Y'}	C _{u,Z'}	$C_{\phi,X'}$	$C_{\varphi,Y}$	$C_{\phi,Z'}$
1	in nächster Reihe:	2000.00	2000.00	- 1	<u> </u>	-	
	651,667,684,701,722,740,758,776,794,812,830,848,866,884,902,920,938,95	5,974,992,1010,1028,1046,1064,1082,1100,11					
2	in nächster Reihe:	2000.00	2000.00	-	-	- 1	
	652,668,685,702,723,741,759,777,795,813,831,849,867,885,903,921,939,95	7,975,993,1011,1029,1047,1065,1083,1101,11					
3	in nächster Reihe:	2000.00	2000.00	-	_	-	
	653,669,686,703,724,742,760,778,796,814,832,850,868,886,904,922,940,95	3,976,994,1012,1030,1048,1066,1084,1102,112	20,1138,1156,1174				
4	in nächster Reihe:	2000.00	2000.00	-	-	2	
	654,670,687,704,725,743,761,779,797,815,833,851,869,887,905,923,941,95	9,977,995,1013,1031,1049,1067,1085,1103,112	21,1139,1157,1175				
5	in nächster Reihe:	5000.00	5000.00	_		-	

Lassallestraße 7a / Unit 3 / Top 6, 1020 Wien

Tel: 1/3306191-0 zt-buero@schelmberger.at

Datum: 14.05.2018

MODELL

Projekt: 101021

Modell: V150-4.0/4.2 MW, Mk3E

1.7.2 Knotenlager - Federn

Lager			Wegfeder [kN/m]			Drehfeder [kNm/rad]	
Nr.	Knoten Nr.	$C_{u,X'}$	$C_{u,Y}$	C _{u,Z'}	C _{o.X}	C _{p,Y}	C _{e.Z}
	655,671,688,705,726,744,762,780,798,816,834,852,870,888,906,924,942,960	978,996,1014,1032,1050,1068,1086,1	104,1122,1140,1158,1176				
6	in nächster Reihe:	5000.00	5000.00		-	-	
	656,672,689,706,727,745,763,781,799,817,835,853,871,889,907,925,943,961	979,997,1015,1033,1051,1069,1087,1	05,1123,1141,1159,1177				
7	in nächster Reihe:	5000.00	5000.00				
	657,673,690,707,728,746,764,782,800,818,836,854,872,890,908,926,944,962	980,998,1016,1034,1052,1070,1088,1					
8	in nächster Reihe:	5000.00	5000.00				
	658,674,691,708,729,747,765,783,801,819,837,855,873,891,909,927,945,963						
9	in nächster Reihe:	5000.00	5000.00	-			
	659,675,692,709,730,748,766,784,802,820,838,856,874,892,910,928,946,964	982,1000,1018,1036,1054,1072,1090,					
10	in nächster Reihe:	10000.00	10000.00	-			
	660,676,693,710,731,749,767,785,803,821,839,857,875,893,911,929,947,965,	983,1001,1019,1037,1055,1073,1091,					
11	in nächster Reihe:	10000.00	10000.00				
	661,677,694,711,732,750,768,786,804,822,840,858,876,894,912,930,948,966,						
12	in nächster Reihe:	10000.00	10000.00	-	-		
	662,678,695,712,733,751,769,787,805,823,841,859,877,895,913,931,949,967,	985,1003,1021,1039,1057,1075,1093,1	111,1129,1147,1165,1183				
13	in nächster Reihe:	10000.00	10000.00				
	663,679,696,713,734,752,770,788,806,824,842,860,878,896,914,932,950,968,	986,1004,1022,1040,1058,1076,1094,1	112,1130,1148,1166,1184				
14	in nächster Reihe:	10000.00	10000.00				
	664,680,697,714,735,753,771,789,807,825,843,861,879,897,915,933,951,969,	987,1005,1023,1041,1059,1077,1095,1	113,1131,1149,1167,1185	· ·			
15	in nächster Reihe:	15000.00	15000.00	-			
	665,681,698,715,736,754,772,790,808,826,844,862,880,898,916,934,952,970,	988,1006,1024,1042,1060,1078,1096,1	114,1132,1150,1168,1186	· ·	· ·		
16	in nächster Reihe:	15000.00	15000.00				
	1544,1547,1550,1553,1556,1559,1568,1572,1576,1580,1584,1588,1604,1609,		1733,1786,1820,1856,1869,1882,1895,1908,1	921	•		
17	in nächster Reihe:	15000.00	15000.00	-	2		
	1545,1548,1551,1554,1557,1560,1569,1573,1577,1581,1585,1600,1605,1610,	1615,1620,1641,1647,1671,1678,1705,	1734,1787,1821,1857,1870,1883,1896,1909,1	922	'		
18	in nächster Reihe:	15000.00	15000.00				
	1546,1549,1552,1555,1558,1561,1570,1574,1578,1582,1586,1601,1606,1611,	1616,1636,1642,1665,1672,1698,1726,	1735,1788,1845,1858,1871,1884,1897,1910,1	923			
19	1988-2017	15000.00	15000.00				
20	in nächster Reihe:	15000.00	15000.00	100000.00		_	

1.11 Veränderliche Dicken

Fläche		1. Knoten		2. Knoten			3. Knoten			
Nr.	Nr.	Dicke d ₁ [mm]	Nr.	Dicke	d ₂ [mm]	Nr.	Dicke d ₃ [mm]		Kommentar	
2	718	1600.0	1706		2990.0	1562	160			
4	1562	1600.0	1707		2990.0	1563	160			
6	1563	1600.0	1708		2990.0	1564	160	0.0		
8 10	1564 1565	1600.0 1600.0			2990.0	1565	160	0.0		
12	1566	1600.0	1710		2990.0	1566 1567	160	0.0		
14	1567	1600.0	1712		2990.0 2990.0	1571	160			
16	1571	1600.0			2990.0	1575	160 160	0.0		
18	1575	1600.0	1714		2990.0	1579	160	7.0		
20	1579	1600.0			2990.0	1583	160	0.0		
22	1583	1600.0	1716		2990.0	1587	160			
22 24	1587	1600.0			2990.0	1602	160	0.0		
26	1602	1600.0	1718		2990.0	1607	160			
	1607	1600.0	1719		2990.0	1612	160	0.0		
28 30	1612	1600.0	1720		2990.0	1617	160			
32	1617	1600.0	1721		2990.0	1637	160			
34 36	1637	1600.0			2990.0	1643	160	0.0		
36	1643	1600.0	1723		2990.0	1666	160			
38	1666	1600.0	1724		2990.0	1673	160	0.0		
40	1673	1600.0	1725		2990.0	1699	160			
42	1699	1600.0	1732 1762		2990.0	1727	160	0.0		
14	1727	1600.0	1762		2990.0	1736	160			
46	1736	1600.0			2990.0	1789	160	0.0		
48	1789 1846	1600.0 1600.0			2990.0	1846 1859	160			
50	1859	1600.0			2990.0 2990.0	1872	160	.0		
52 54	1872	1600.0	1890		2990.0	1885	160 160			
56	1885	1600.0			2990.0	1898	160	.0		
58	1898	1600.0	1916		2990.0	1911	160	0		
60	1911	1600.0	1929		2990.0	718	160	.0		
Quers luers. Nr.	Schnitte Mater. Nr.	I _T [cm ⁴] A [cm ²]		[cm ⁴] , [cm ²]	l₂ [cm⁴] A₂ [cm²]		Hauptachsen α [°]	Drehung	Gesamtabmessunger	n [mm] Höhe h
		A [GIII-]	^y	/ [CIII-]	Az [CHI-]		α[]	α' [°]	Breite b	Hone n
1	Kreis 650		E.				1/4		W W	
	3	1752481.00		876240.50		876240.52	0.00	0.0	0 650.0	650.0
2	Kreis 650	1752481.00 3318.31		2812.12		2812.12				
2	Kreis 650							0.0	0 650.01	650.0
2		1752481.00		876240.50			0.00	0.0	0 650.0	650.0
2						2812.12 876240.52 2812.12		0.0	0 650.0	650.0
Stabs	4 BP Ø65	1752481.00 3318.31		876240.50			0.00	0.0	0 650.0	650.0
Stabs	4 BP Ø65	1752481.00 3318.31 Stabsatz		876240.50 2812.12		876240.52 2812.12	0.00 Länge	0.0		650.0
Stabs	4 BP Ø65	1752481.00 3318.31	Т	876240.50 2812.12	s		0.00	0.0	0 650.0 Kommentar	650.0
Stabs	4 BP Ø65	1752481.00 3318.31 Stabsatz		876240.50 2812.12	6,418-431,417,736-738,101	876240.52 2812.12 tab Nr.	0.00 Länge	20000		650.0
	4 BP Ø65	1752481.00 3318.31 Stabsatz	Ty Stabzug Stabzug	876240.50 2812.12 VP 41	6,418-431,417,736-738,101 32,434-437,439-448,433,739	876240.52 2812.12 2812	0.00 Länge			650.0
Stabs satz Nr.	4 BP Ø65	1752481.00 3318.31 Stabsatz	Ty Stabzug Stabzug Stabzug	876240.50 2812.12 VP 41	6,418-431,417,736-738,101 32,434-437,439-448,433,739	876240.52 2812.12 2812	0.00 Länge	20000 20000 20000		650.0
Stabs	4 BP Ø65	1752481.00 3318.31 Stabsatz	Ty Stabzug Stabzug Stabzug Stabzug	876240.50 2812.12 yp 41 43 45 46	6,418-431,417,736-738,101 32,434-437,439-448,433,739 30,452-465,451,742-744,101 37,469-482,468,745-747,101	876240.52 2812.12 tab Nr. 6 -741,1017 8 9	0.00 Länge	20000 20000 20000 20000		650.0
Stabs atz Nr. 1 2 3 4	4 BP Ø65	1752481.00 3318.31 Stabsatz	Ty Stabzug Stabzug Stabzug	876240.50 2812.12 yp 41 43 45 46	6,418-431,417,736-738,101 32,434-437,439-448,433,739	876240.52 2812.12 tab Nr. 6 -741,1017 8 9	0.00 Länge	20000 20000 20000		650.0
Stabs satz Nr.	4 BP Ø65	1752481.00 3318.31 Stabsatz	Ty Stabzug Stabzug Stabzug Stabzug	876240.50 2812.12 yp 41 43 45 46	6,418-431,417,736-738,101 32,434-437,439-448,433,739 30,452-465,451,742-744,101 37,469-482,468,745-747,101	876240.52 2812.12 tab Nr. 6 -741,1017 8 9	0.00 Länge	20000 20000 20000 20000		650.0
Stabs atz ir. 1 2 3 4	4 BP Ø65	1752481.00 3318.31 Stabsatz	Ty Stabzug Stabzug Stabzug Stabzug	876240.50 2812.12 yp 41 43 45 46	6,418-431,417,736-738,101 32,434-437,439-448,433,739 30,452-465,451,742-744,101 37,469-482,468,745-747,101	876240.52 2812.12 tab Nr. 6 -741,1017 8 9	0.00 Länge	20000 20000 20000 20000		650.0

■ 1.13 Querschnitte

TO GUOTE	JOHNIEG							
Quers.	Mater.	I _T [cm ⁴]	l _y [cm ⁴]	i _z [cm ⁴]	Hauptachsen	Drehung	Gesamtabmessunge	en [mm]
Nr.	Nr.	A [cm²]	A _y [cm ²]	A _z [cm ²]	α [°]	α' [°]	Breite b	Höhe h
1	Kreis 650		· · · · · · · · · · · · · · · · · · ·					
	3	1752481.00 3318.31	876240.50 2812.12	876240.52 2812.12	0.00	0.00	650.0	650.0
2	Kreis 650							
	4	1752481.00 3318.31	876240.50 2812.12	876240.52 2812.12	0.00	0.00	650.0	650.0
	BP 065				· ·	' '	'	

■ 1.21 Stabsätze

Satz	Stabsalz			Länge	
Nr.	Bezeichnung	Тур	Stab Nr.	[mm]	Kommentar
1	Pfahl	Stabzug	416,418-431,417,736-738,1016	20000	
2	Pfahl	Stabzug	432,434-437,439-448,433,739-741,1017	20000	
3	Pfahl	Stabzug	450,452-465,451,742-744,1018	20000	
4	Pfahl	Stabzug	467,469-482,468,745-747,1019	20000 20000	
5	Pfahl	Stabzug	484,486-499,485,748-750,1020	20000	

Lassallestraße 7a / Unit 3 / Top 6, 1020 Wien

Tel: 1/3306191-0 zt-buero@schelmberger.at

Blatt: 1

Projekt: 101021

Modell: V150-4.0/4.2 MW, Mk3E

m: 18.05.2018

■ 1.21 Stabsätze

Satz	Stabsatz			Länge	
Nr.	Bezeichnung	Тур	Stab Nr.	[mm]	Kommentar
6	Pfahl	Stabzug	501,503-516,502,751-753,1021	20000	
7	Pfahl	Stabzug	518,520-533,519,754-756,1022	20000	
8	Pfahl	Stabzug	535,537-550,536,757-759,1023	20000	
9	Pfahl	Stabzug	552,554-567,553,760-762,1024	20000 20000	
10	Pfahl	Stabzug	569,571-584,570,763-765,1025	20000	
11	Pfahl	Stabzug	586,588-601,587,766-768,1026	20000	
12	Pfahl	Stabzug	603,605-618,604,769-771,1027	20000	
13	Pfahl	Stabzug	620,622-635,621,772-774,1028	20000	
14	Pfahl	Stabzug	637,639-652,638,775-777,1029	20000	
15	Pfahl	Stabzug	654,656-669,655,778-780,1030	20000	
16	Pfahl	Stabzug	671,673-686,672,781-783,1031	20000	
17	Pfahl	Stabzug	688,690-703,689,784-786,1032	20000 20000	
18	Pfahl	Stabzug	705,707-720,706,787-789,1033	20000	
19	Pfahl	Stabzug	722,724-735,790,791,723,793-795,1034	20000	
20	Pfahl	Stabzug	796,798-811,797,813-815,1035	20000	
21	Pfahl	Stabzug	816,818-831,817,833-835,1036	20000	
22	Pfahl	Stabzug	836,838-851,837,853-855,1037	20000	
23	Pfahl	Stabzug	856,858-871,857,873-875,1038	20000	
24	Pfahl	Stabzug	876,878-891,877,893-895,1039	20000	
25	Pfahl	Stabzug	896,898-911,897,913-915,1040	20000	
26	Pfahl	Stabzug	916,918-931,917,933-935,1041	20000	
27	Pfahl	Stabzug	936,938-951,937,953-955,1042	20000	
28	Pfahl	Stabzug	956,958-971,957,973-975,1043	20000	
29	Pfahl	Stabzug	976,978-991,977,993-995,1044	20000	
30	Pfahl	Stabzug	996,998-1011,997,1013-1015,1045	20000	

2.1 Lastfälle

Last-	LF-Bezeichnung	Keine Norm		Eigengewicht - Faktor	in Richtung	
fall		Einwirkungskategorie	Aktiv	×	Y	Z
LF1	Eigen + Überschüttung g=16kN/m³	Ständige Lasten	X	0.000	0.000	1.000
LF2	Eigen + Überschüttung g=18kN/m³	Ständige Lasten	⊠ ⊠	0.000	0.000	1.000
LF3	dlc 6.2	Ständige Lasten			5.555	
LF4	dic 1.4	Ständige Lasten				
LF5	Prob.:1e-2	Ständige Lasten				

2.1.1 Lastfälle - Berechnungsparameter

Last-	LF-Bezeichnung			
fall			Be	erechnungsparameter
LF1	Eigen + Überschüttung g=16kN/m³	Berechnungstheorie	: 0	Theorie I. Ordnung (linear)
		Berechnungsverfahren für das System der nichtlinearen algebraischen Gleichungen	: ③	Picard
LF2	Eigen + Überschüttung g=18kN/m³	Berechnungstheorie	;	Theorie I. Ordnung (linear)
		Berechnungsverfahren für das System der nichtlinearen algebraischen Gleichungen	: 0	Picard
LF3	dlc 6.2	Berechnungstheorie	; ©	Theorie I. Ordnung (linear)
		Berechnungsverfahren für das System der nichtlinearen algebraischen Gleichungen	; ⊚	Newton-Raphson
LF4	dlc 1.4	Berechnungstheorie	: ⊚	Theorie I. Ordnung (linear)
		Berechnungsverfahren für das System der nichtlinearen algebraischen Gleichungen	: ⊚	Newton-Raphson
LF5	Prob.:1e-2	Berechnungstheorie	; 0	Theorie I. Ordnung (linear)
		Berechnungsverfahren für das System der nichtlinearen algebraischen Gleichungen	: ⑥	Picard

2.5 Lastkombinationen

Last-		Lastkombination				
kombin.	BS	Bezeichnung	Nr.	Faktor		Lastfall
LK1	GZT	DLC 6.2_oAT_Traglast_ g16	1		LF1	Eigen + Überschüttung g=16kN/m³
LK2	GZT	DLC 1.4_oAT_Traglast_ g16	2		LF3 LF1	dlc 6.2 Eigen + Überschüttung g=16kN/m³
			2	1.35	LF4	dic 1.4
LK3	GZG	DLC 6.2_oAT_Gebrauchstaugl g16	1 2	1.00 1.00	LF1 LF3	Eigen + Überschüttung g=16kN/m³ dic 6.2
LK4	GZG	DLC 1.4_oAT_Gebrauchstaugl g16	1 2	1.00	LF1 LF4	Eigen + Überschüttung g=16kN/m³ dic 1.4
LK5	GZG	SL_oAT_Gebrauchstaugl g16	1	1.00	LF1 LF5	Eigen + Überschüttung g=16kN/m³ Prob.:1e-2
LK6	GZT	DLC 6.2_oAT_Traglast_g18	1	1.10	LF2	Eigen + Überschüttung g=18kN/m³
LK7	GZT	DLC 1.4_oAT_Traglast_g18	1	1.35	LF3 LF2	dlc 6.2 Eigen + Überschüttung g=18kN/m³
			2		LF4	dlc 1.4
LK8	GZG	DLC 6.2_oAT_Gebrauchstaugl g18	1 2	1.00 1.00	LF2 LF5	Eigen + Überschüttung g=18kN/m³ Prob.:1e-2
LK9	GZG	DLC 1.4_oAT_Gebrauchstaugl g18	1 2	1.00	LF2 LF4	Eigen + Überschüttung g=18kN/m³ dlc 1.4
LK10	GZG	SL_oAT_Gebrauchstaugl g18	1 2	1.00	LF2 LF5	Eigen + Überschüttung g=18kN/m³ Prob.:1e-2

14.05.2018

Ziviltechnikerbüro Dipl.-Ing. Josef Schelmberger

Lassallestraße 7a / Unit 3 / Top 6, 1020 Wien

Tel: 1/3306191-0 zt-buero@schelmberger.at

LASTEN

Modell: V150-4.0/4.2 MW, Mk3E

LF1 Eigen + Überschüttung g=16kN/m³

3.4 Flächenlasten LF1: Eigen + Überschüttung g=16kN/m³

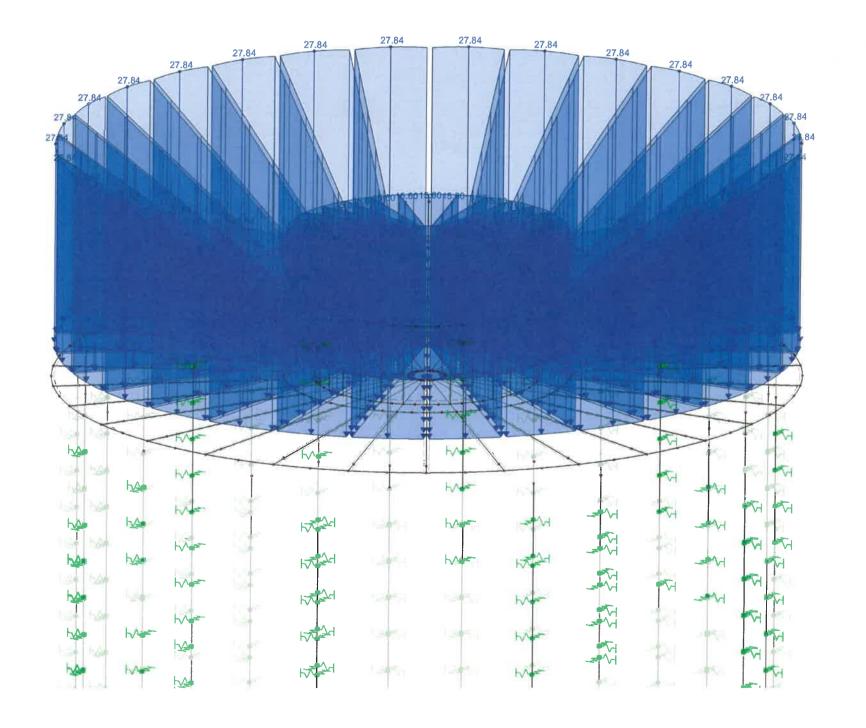
Nr.	An Flächen Nr.	Last- Art	Last- verteilung	Last- Richtung	Symbol	Lastparameter Wert	Einheit	erschüttung g=16k An Knoten Nr.
1	1,3,5,7,9,11,13,15,17,19,21,23,25,27,29,31,33,35,37,39,41, 43,45,47,49,51,53,55,57,59	Kraft	Konstant	ZL	р	15.60 k		
2	43,45,47,49,51,53,55,57,59 2	Kraft	Linear	ZL	p ₁	5.60 k	N/m²	297
		Truit.	Lingui		p ₁	27.84 k	N/m²	1589
					P ₃	5.60 k	N/m²	1679
3	4	Kraft	Linear	ZL	P ₁	5.60 k	N/m²	1679
					p ₂	27.84 k 5.60 k	V/m² √m²	1590 1680
4	6	Kraft	Linear	ZL	p ₃	5.60 k	V/m²	1680
					p ₂	27.84 k	N/m²	1591
					p ₃	5.60 k	V/m²	1681
5	8	Kraft	Linear	ZL	P ₁	5.60 ki 27.84 ki	N/m²	1681
					P ₂ p ₃	5.60 ki	V/m² J/m²	1592 1682
6	10	Kraft	Linear	ZL	P ₃	5.60 kl	√m²	1682
					p ₂	27,84 kl	√m²	1593
					p ₃	5.60 kl	√m²	1683
7	12	Kraft	Linear	ZL	P ₁	5.60 ki 27.84 ki	V/M² J/m²	1683 1594
					P ₂ P ₃	5.60 kl	Vm²	1684
8	14	Kraft	Linear	ZL	p ₁	5.60 kt	l/m²	1684
					p ₂	27.84 ki	l/m²	1595
	40	16-4	U		p ₃	5.60 kt	l/m²	1685
9	16	Kraft	Linear	ZL	P ₁	5.60 kt 27.84 kt	V/M² I/m²	1685 1596
					P ₂ P ₃	5.60 kM	Vm²	1686
10	18	Kraft	Linear	ZL	p ₁	5.60 kl	l/m²	1686
					p ₂	27.84 kM	l/m²	1597
11	20	Kraft	tinosr	71	p ₃	5.60 kM	I/m²	1687
11	20	Kraft	Linear	ZL	P ₁ P ₂	5.60 kM 27.84 kM	I/m² I/m²	1687 1598
					P2 P3	5.60 kM	l/m²	1688
2	22	Kraft	Linear	ZL	P ₁	5.60 kN	l/m²	1688
					p ₂	27.84 kM	1/m²	1599
3	24	Kraft	Linear	ZL	P ₃		l/m² l/m²	1689 1689
3	24	rvait	Linear	ZL	P ₁ P ₂	27.84 kN	/m²	1603
					P2 P3	5.60 kN	/m²	1690
14	26	Kraft	Linear	ZL	P ₁	5.60 kN	/m²	1690
					p ₂	27.84 kN	/m²	1608
15	28	Kraft	Linear	ZL	P ₃	5.60 kN 5.60 kN	/m² /m²	1691
	20	Nait	Lilledi	21.	P ₁ P ₂	27.84 kN	/m²	1691 1613
					p ₃	5.60 kN	/m²	1692
6	30	Kraft	Linear	ZL	P ₁	5.60 kN	/m²	1692
					P ₂ P ₃	27.84 kN 5.60 kN	/m²	1618
7	32	Kraft	Linear	ZL	P ₃	5.60 kN	/m² /m²	1693 1693
		1000	200		p ₁	27.84 kN	/m²	1638
					P ₃	27.84 kN 5.60 kN	/m²	1694
8	34	Kraft	Linear	ZL	P ₁	5.60 kN 27.84 kN 5.60 kN	/m²	1694
					p ₂	27.84 kN	/m² /m²	1644
9	36	Kraft	Linear	ZL	p ₃	5.60 kN	/m²	1695 1695
•					p ₂	27.84 kN	/m²	1667
				_	P ₃	5.60 kN	m²	1696
0	38	Kraft	Linear	ZL	P ₁	5.60 kN	/m²	1696
					P ₂ P ₃	27.84 kN 5.60 kN	m²	1674 1697
1	40	Kraft	Linear	ZL	P3 P1	5.60 kN	m²	1697
					p ₂	27.84 kN	m²	1700
	40	IX 5			p ₃	5.60 kN	m²	1703
2	42	Kraft	Linear	ZL	P ₁	5.60 kN 27.84 kN	m² m²	1703 1728
					P ₂ P ₃	5.60 kN	m²	1728
3	44	Kraft	Linear	ZL	p ₁	5.60 kN/	m²	1731
					P ₂	27.84 kN/	m²	1758
	40	V-aB	Linear	71	p ₃	5.60 kN/	m²	1761
4	46	Kraft	Linear	ZL	P ₁	5.60 kN/ 27.84 kN/	m²	1761 1790
					P ₂ P ₃	5.60 kN/	m²	1793
5	48	Kraft	Linear	ZL	p ₁	5.60 kN/	m²	1793
					p ₂	27.84 kN/	m²	1847
5	50	Vraft	Linear	ZL	p ₃	5.60 kN/	m²	1850
,	50	Kraft	Linear	ZL	P ₁	5.60 kN/ 27.84 kN/		1850 1860
					P ₂ P ₃	5.60 kN/		1863
7	52	Kraft	Linear	ZL	p ₁	5.60 kN/	m²	1863
					p ₂	27.84 kN/		1873
8	54	Kroft	Linear	71	p ₃	5.60 kN/	m²	1876
В	<u>ч</u>	Kraft	Linear	ZL	P ₁	5.60 kN/ 27.84 kN/		1876 1886
					P ₂ P ₃	5.60 kN/		1889
9	56	Kraft	Linear	ZL	P ₁	5.60 kN/	m²	1889
					p ₂	27.84 kN/	m²	1899
					p ₃	5.60 kN/	n²	1902

Lassallestraße 7a / Unit 3 / Top 6, 1020 Wien

Tel: 1/3306191-0 zt-buero@schelmberger.at

8/28 LASTEN

14.05.2018


Modell: V150-4.0/4.2 MW, Mk3E

		Last-	Last-	Last-	Lastparameter				
Nr.	An Flächen Nr.	Art	verteilung	Richtung	Symbol	Wert	Einheit	Nr.	
30	58	Kraft	Linear	ZL	P ₁	5.60	kN/m²	1902	
					P ₂	27.84	kN/m²	1912	
					P ₃	5.60	kN/m²	1912 1915	
31	60	Kraft	Linear	ZL	p ₁	5.60	kN/m²	1915	
					p ₂	27.84	kN/m²	1925	
					p ₃	5.60	kN/m²	297	

■ LF1: Eigen + Überschüttung g=16kN/m³

LF 1: Eigen + Überschüttung g=16kN/m³ Belastung [kN/m^2]

Isometrie

14.05.2018

Ziviltechnikerbüro Dipl.-Ing. Josef Schelmberger

Lassallestraße 7a / Unit 3 / Top 6, 1020 Wien

Tel: 1/3306191-0 zt-buero@schelmberger.at

LASTEN

Projekt: 101021

Modell: V150-4.0/4.2 MW, Mk3E

LF2 Eigen + Überschüttung g=18kN/m³

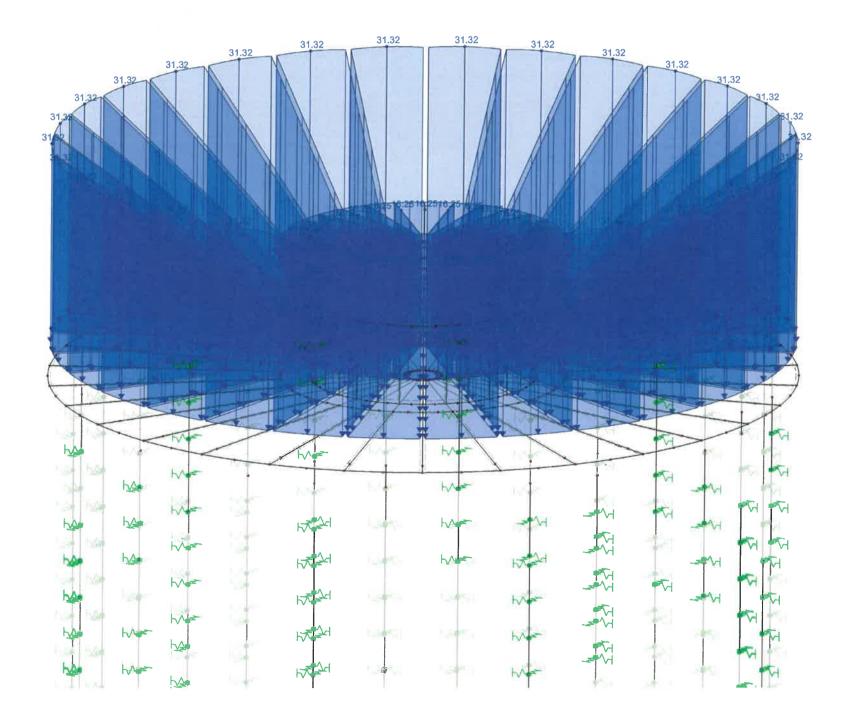
■ 3.4 Flächenlasten LF2: Eigen + Überschüttung g=18kN/m³

An Flächen Nr.	Last- Art	Last- verteilung	Last- Richtung	Symbol	Lastparameter Wert	LF2: Eigen + Ube	
1.3.5.7.9.11.13.15.17.19.21.23.25.27.29.31.33.35.37.39.41.	Kraft	Konstant	ZL	р	16.25 kl	Einheit N/m²	Nr.
1,3,5,7,9,11,13,15,17,19,21,23,25,27,29,31,33,35,37,39,41, 43,45,47,49,51,53,55,57,59							
2	Kraft	Linear	ZL	P ₁	6.30 ki 31.32 ki	N/m²	297
				P ₂ p ₃	6.30 ki	N/m²	1589 1679
4	Kraft	Linear	ZL	P3 P1	6.30 kt	V/m²	1679
				p ₂	31.32 kf	N/m²	1590
		114.000		p ₃	6.30 kt	V/m²	1680
6	Kraft	Linear	ZL	P ₁	6.30 ki	V/m²	1680
				p ₂	31.32 kt 6.30 kt	V/m²	1591 1681
8	Kraft	Linear	ZL	ρ ₃ Ρ ₁	6.30 kM	N/m²	1681
	1441	Eli loci	22	p ₁	31.32 kh	N/m²	1592
				P ₂ P ₃	6.30 kM	N/m²	1682
10	Kraft	Linear	ZL	P ₁	6.30 kh	√m²	1682 1682 1593 1683
				p ₂	31.32 kM	√m²	1593
40	W. 5		_	P ₃	6.30 kM	1/m²	1683
12	Kraft	Linear	ZL	ρ ₁	6.30 kM 31.32 kM	Vm²	1683 1594
				P ₂	6.30 kN	J/m²	1594 1684
14	Kraft	Linear	ZL	P3	6.30 kN	I/m ²	1684
				p ₂	31.32 kN	l/m²	1595
				P ₃	6.30 kN	Vm²	1685
16	Kraft	Linear	ZL	ρ ₁	6.30 kN	l/m²	1685
				P ₂	31.32 kN	i/m²	1596
40	16. 5	Western		p ₃	6.30 kN	1/m²	1686 1686
18	Kraft	Linear	ZL	P ₁	6.30 kN	l/m ²	1686
				p ₂	31.32 kN	//m²	1597
20	Kraft	Linear	ZL	P ₃	6.30 kN 6.30 kN	//m²	1687
	T S SILL		1	P1 P2	31.32 kN	l/m²	1687 1598
				p ₃	6.30 kN	l/m²	1688
22	Kraft	Linear	ZL	P ₁	6.30 kN	l/m²	1688
				p ₂	31.32 kN	/m²	1599
				p ₃	6.30 kN	/m²	1689
24	Kraft	Linear	ZL	p ₁	6.30 kN	/m²	1689
				p ₂	31.32 kN	/m²	1603
26	Kraft	Linear	71	p ₃	6.30 kN	/m²	1690
20	Nait	Lileai	ZL	P ₁	6.30 kN 31.32 kN	/m²	1690 1608
				P ₂ P ₃	6.30 kN	/m²	1691
28	Kraft	Linear	ZL	P ₃	6.30 kN	/m²	1691
				ρ ₂	31.32 kN	/m²	1613
				P ₃	6.30 kN	/m²	1692
30	Kraft	Linear	ZL	P ₁	6.30 kN	/m²	1692
				P ₂	31.32 kN	/m²	1618
32	Kraft	Linner	71	p ₃	31.32 kN/ 6.30 kN/ 6.30 kN/	/m²	1693
32	Mail	Linear	ZL	P ₁	5.30 KN/	/m² /?	1693
				P ₂ P ₃	31.32 kN/	/m²	1638 1694
34	Kraft	Linear	ZL	P ₁	6.30 kN/ 6.30 kN/ 31.32 kN/ 6.30 kN/ 6.30 kN/	m²	1694
				p ₂	31.32 kN/	m²	1644
				P ₃	6.30 kN/	m²	1695
36	Kraft	Linear	ZL	P ₁	6.30 kN/	m²	1695
				P ₂	31.32 KN/	m²	1667
38	Kraft	Lincor	71	P ₃	6.30 kN/		1696
30	Krait	Linear	ZL	P1	6.30 kN/		1696
				P ₂ P ₃	31.32 kN/ 6.30 kN/	m²	1674 1697
40	Kraft	Linear	ZL	P3 P1	6.30 kN/	m²	1697
			_	p ₂	31.32 kN/	m²	1700
				p ₃	6.30 kN/	rn²	1703
42	Kraft	Linear	ZL	P ₁	6.30 kN/	m²	1703
				p ₂	31.32 kN/	m²	1728
44	1/	Linner		P ₃	6.30 kN/	m²	1731
44	Kraft	Linear	ZL	P ₁	6.30 kN/i 31.32 kN/i	m²	1731
				P ₂	6.30 kN/i	m²	1758 1761
46	Kraft	Linear	ZL	P ₃ P ₁	6.30 kN/r	m²	1761 1761
				P ₁ P ₂	31.32 kN/i	m²	1790
				p ₃	6.30 kN/r	m²	1793
48	Kraft	Linear	ZL	P ₁	6.30 kN/r	m²	1793
				p ₂	31.32 kN/r	m²	1847
50				p ₃	6.30 kN/r	m²	1850
50	Kraft	Linear	ZL	P ₁	6.30 kN/r	m²	1850
				p ₂	31.32 kN/r	TI ²	1860
52	Kroft	Linear	71	P ₃	6.30 kN/r	n² 2	1863
VC	Kraft	Linear	ZiL	P ₁	6.30 kN/r	n2	1863
				p ₂ p ₃	6 30 LN/	m²	1873 1876
54	Kraft	Linear	ZL.	P3 P1	31.32 kN/r 6.30 kN/r 6.30 kN/r	m ²	1876
				p ₁ p ₂	31.32 kN/r	n²	1886
				P ₃	31.32 kN/r 6.30 kN/r 6.30 kN/r	n²	1889
56	Kraft	Linear	ZL	p ₁	6.30 kN/n	n ²	1889
				p ₂	31.32 kN/n 6.30 kN/n	_2	1899

Lassallestraße 7a / Unit 3 / Top 6, 1020 Wien

Tel: 1/3306191-0 zt-buero@schelmberger.at

10/28 **LASTEN**


14.05.2018 Modell: V150-4.0/4.2 MW, Mk3E

Projekt: 101021

4 Fläche	nlasten				_		LF2: Eigen + Übe	
		Last-	Last-	Last-		Lastparameter		An Knoten
Nr.	An Flächen Nr.	Art	verteilung	Richtung	Symbol	Wert	Einheit	Nr.
30	58	Kraft	Linear	ZL	P1	6.30	kN/m²	1902
					p ₂	31.32	kN/m²	1912
					P ₃	6.30	kN/m²	1915
31	60	Kraft	Linear	ZL	P ₁	6.30	kN/m²	1915 1925
					P ₂	31.32	kN/m²	1925
					p ₃	6.30	kN/m²	297

LF 2: Eigen + Überschüttung g=18kN/m³ Belastung [kN/m^2]

Isometrie

Lassallestraße 7a / Unit 3 / Top 6, 1020 Wien

Tel: 1/3306191-0 zt-buero@schelmberger.at

Seite: 11/28
Blatt: 1

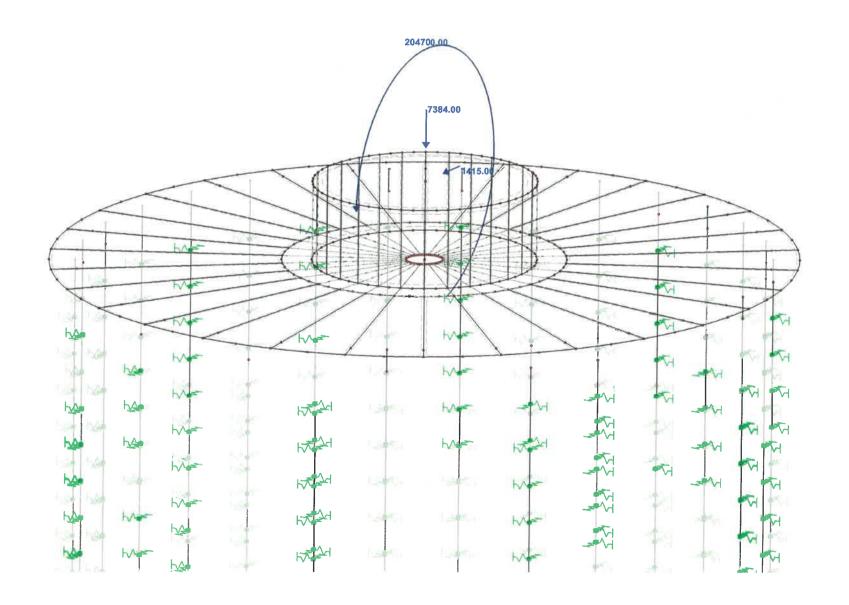
LASTEN

Datum:

Projekt: 101021

Modell: V150-4.0/4.2 MW, Mk3E

LF3 dlc 6.2 3.1 Knotenlasten - Komponentenweise
 - Koordinatensystem


LF3: dlc 6.2 An Knoten Koordinaten-Kraft [kN] Moment [kNm] P_Y/P_V P_X / P_U Pz/Pw Nr. system M_X / M_U M_Y / M_V M_z / M_W 10 1415.00 204700.00 0 | Globales XYZ 0.00 0.00 DLC 2.3

LF3: dlc 6.2

LF 3: dlc 6.2 Belastung [kN], [kNm]

Isometrie

14.05.2018

Lassallestraße 7a / Unit 3 / Top 6, 1020 Wien

Tel: 1/3306191-0 zt-buero@schelmberger.at

Seite: 12/28
Blatt: 1

LASTEN

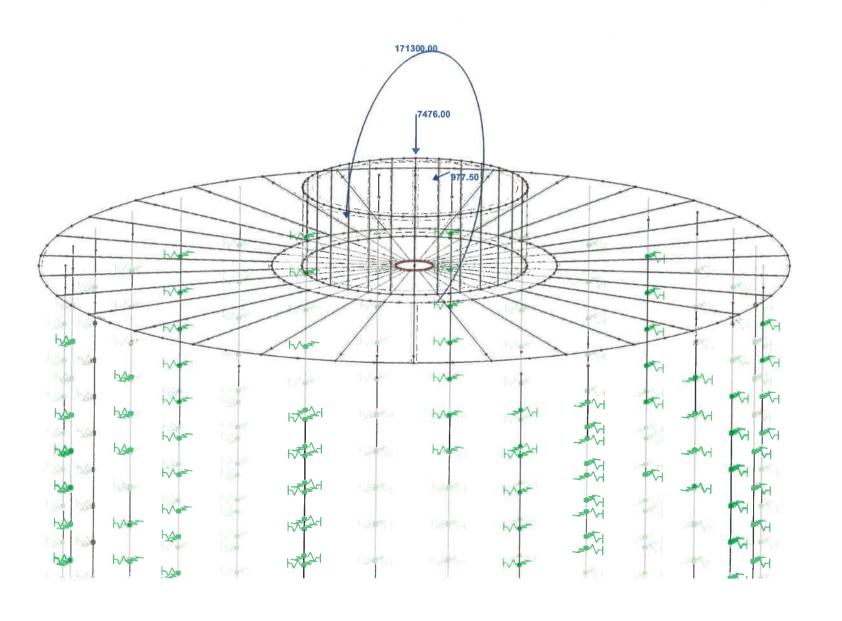
Projekt: 101021

Modell: V150-4.0/4.2 MW, Mk3E

14.05.2018

21

LF4 dlc 1.4 ■ 3.1 Knotenlasten - Komponentenweise


- Koordinatensystem

LF4: dlc 1.4

	An Knoten	Koordinaten-		Kraft [kN]			Moment [kNm]	
Nr.	Nr.	system	P _X / P _U	P _Y / P _V	Pz/Pw	M _X / M _U	M_Y/M_V	Mz / M _W
1	DLC 3.2	0 Globales XYZ	0.00	977.50	7476.00	171300.00	0.00	0.00

LF4: dlc 1.4

LF 4: dlc 1.4 Belastung [kN], [kNm]

y Z

T05 0075-3482 Ver 00 - Approved - Exported from DMS: 2018-05-28 by SEYAS

Lassallestraße 7a / Unit 3 / Top 6, 1020 Wien

Tel: 1/3306191-0 zt-buero@schelmberger.at

Blatt:

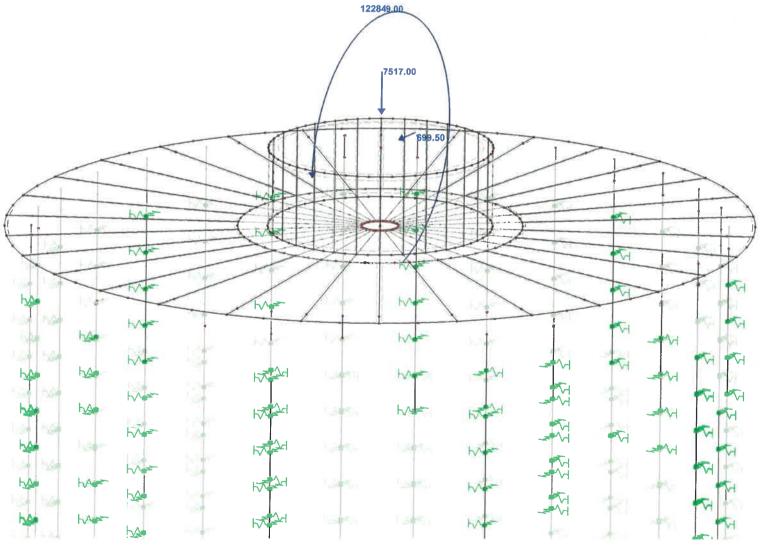
LASTEN

Projekt: 101021

Modell: V150-4.0/4.2 MW, Mk3E

Datum: 14.05.2018

Isometrie


13/28

LF5 Prob.:1e-2 3.1 Knotenlasten - Komponentenweise

- Koordinatensystem LF5: Prob.:1e-2 An Knoten Koordinaten-Kraft [kN] Moment [kNm] Nr. P_X/P_U P_Y/P_V P_z/P_w M_X / M_U M_Y / M_V system M_Z / M_W 0.00 699.50 7517.00 10 0 | Globales XYZ 122849.00 0.00 Prob.:1e-2

LF5: Prob.:1e-2

LF 5: Prob.:1e-2 Belastung [kN], [kNm]

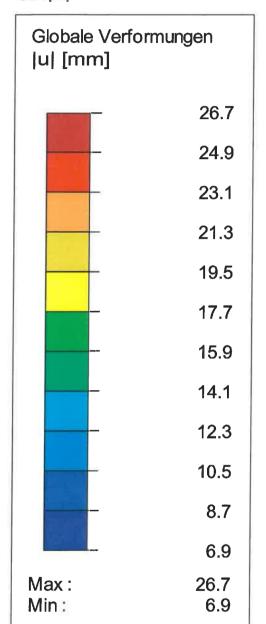
Y X

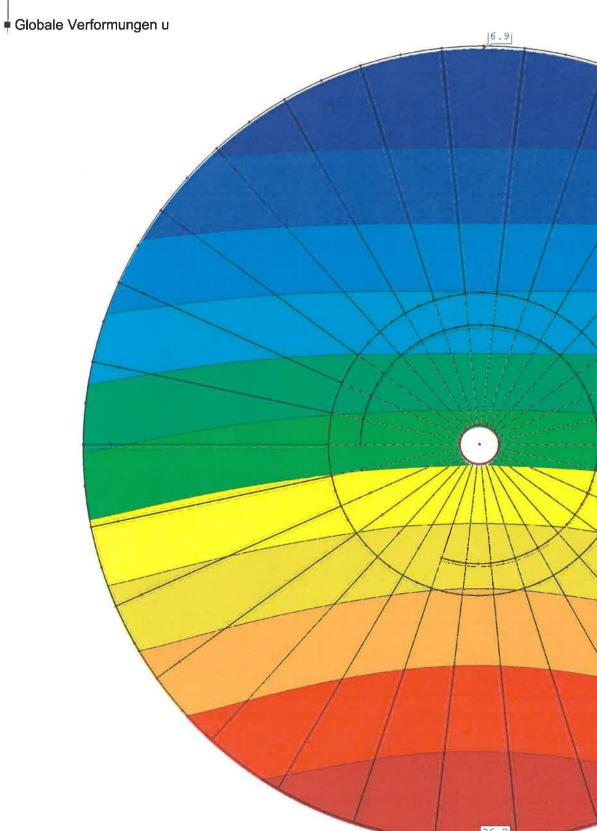
14/28

Ziviltechnikerbüro Dipl.-Ing. Josef Schelmberger

Lassallestraße 7a / Unit 3 / Top 6, 1020 Wien

Tel: 1/3306191-0 zt-buero@schelmberger.at


Blatt:


ERGEBNISSE

Modell: V150-4.0/4.2 MW, Mk3E

14.05.2018

LK 8: DLC 6.2_oAT_Gebrauchstaugl._ g18 Globale Verformungen u Werte: u [mm]

In Z-Richtung

Max u: 26.7, Min u: 6.9 [mm] Faktor für Verformungen: 10.00

RFEM 5.11.02 - Allgemeine 3D-Tragwerke nach FEM

www.dlubal.com

1902 mm

24

T05 0075-3482 Ver 00 - Approved - Exported from DMS: 2018-05-28 by SEYAS

www.dlubal.com

Stäbe Max N: 491.16, Min N: -2814.86 [kN]

RFEM 5.11.02 - Allgemeine 3D-Tragwerke nach FEM

T05 0075-3482 Ver 00 - Approved - Exported from DMS: 2018-05-28 by SEYAS

Stäbe Max N: 257.73, Min N: -3117.88 [kN]

RFEM 5.11.02 - Aligemeine 3D-Tragwerke nach FEM

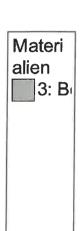
Lassallestraße 7a / Unit 3 / Top 6, 1020 Wien Tel: 1/3306191-0 zt-buero@schelmberger.at

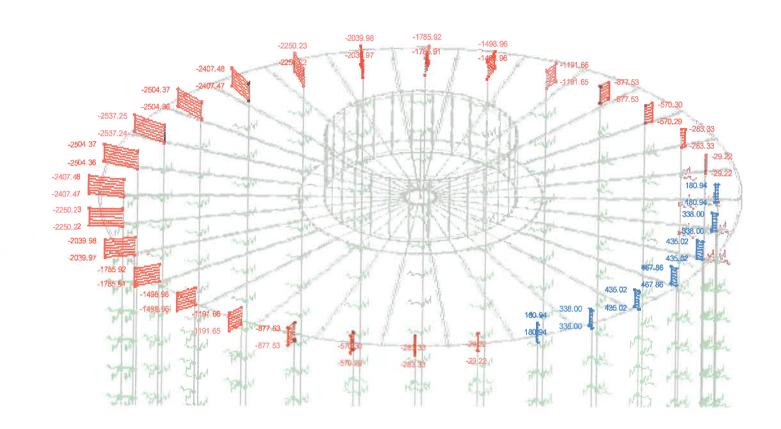
Blatt: **ERGEBNISSE**

Seite:

Modell: V150-4.0/4.2 MW, Mk3E

Schnittgrößen N

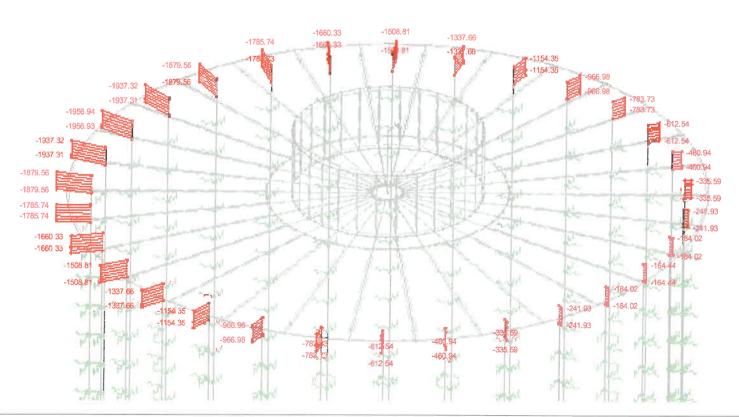

LK 3: DLC 6.2_oAT_Gebrauchstaugl._ g16 Stäbe Schnittgrößen N


Isometrie

14.05.2018

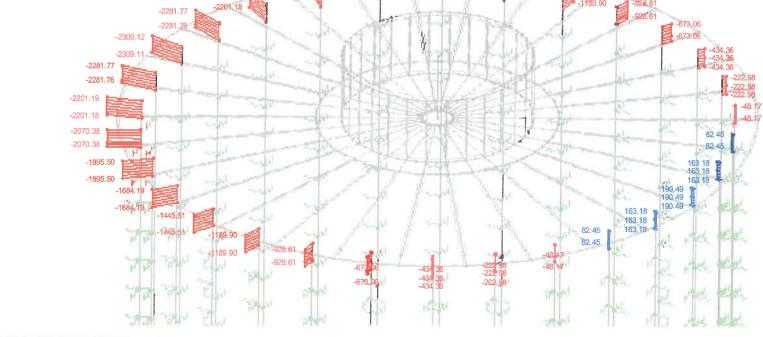
26

17/28



Stäbe Max N: 467.86, Min N: -2537.25 [kN]

Schnittgrößen N LK 8: DLC 6.2_oAT_Gebrauchstaugl._ g18 Stäbe Schnittgrößen N


Isometrie

Stäbe Max N: -164.44, Min N: -1956.94 [kN]

RFEM 5.11.02 - Allgemeine 3D-Tragwerke nach FEM

Stäbe Max N: 190.49, Min N: -2309.12 [kN]

T05 0075-3482 Ver 00 - Approved - Exported from DMS: 2018-05-28 by SEYAS

28

T05 0075-3482 Ver 00 - Approved - Exported from DMS: 2018-05-28 by SEYAS

Stäbe Max N: -164.44, Min N: -1956.94 [kN]

RFEM 5.11.02 - Allgemeine 3D-Tragwerke nach FEM

Lassallestraße 7a / Unit 3 / Top 6, 1020 Wien

Tel: 1/3306191-0 zt-buero@schelmberger.at

Modell: V150-4.0/4.2 MW, Mk3E

20/28 Blatt: **RF-BETON Flächen**

Datum:

14.05.2018

RF-BETON Flächen Stahlbeton-Bernessung Projekt: 101021

1.1 Basisangaben

Bemessung nach Norm: EN 1992-1-1:2004/A1:2014 TRAGFÄHIGKEIT Zu bemessende Lastkombinationen: DLC 6.2_oAT_Traglast_ g16 Ständig und vorübergehend DLC 1.4_oAT_Traglast_g16 Ständig und vorübergehend LK2 LK6 DLC 6.2_oAT_Tragiast_g18 Ständig und vorübergehend DLC 1.4_oAT_Traglast_g18 Ständig und vorübergehend LK7

Definition der vorhandenen Zusatzbewehrung Automatische Anordnung nach Vorgaben in Maske 1.4

DETAILEINSTELLUNGEN Nachweisverfahren für Bewehrungsumhüllende Ansatz von Schnittgrößen ohne Rippenanteil Gemischte

Einsteilungen der Beriessungssituation i Lastkombination: Charakteristisch mit Direktlast Charakteristisch mit Zwangsverformung Häufig Quasi-ständig Nachweise: Nachweise: -Nachweise: -

Nachweise: k1*fck, k2*fck, k3*fyk, k4*fyk, Wk, UI

1.2 Materialien

Teilsicherheitsbeiwert ye

Berücksichtigung von Langzeitwirkungen Alpha-cc Berücksichtigung von Langzeitwirkungen Alpha-ct

Material Materialbezeichnung Beton-Festigkeitsklasse Stahl-Bezeichnung Kommentar Beton C35/45 B 550 S (A) Baustahl S 355 B 550 S (A)

1.4 Bewehrungssatz Nr. 1 - Fundament

Einstellungen der Bemessungssituation für GZG-Nachweise

Angewendet auf Flächen: 1-60 BEWEHRUNGSGRAD
Mindest-Querbewehrung
Mindest-Bewehrung generell
Mindest-Druckbewehrung
Mindest-Zugbewehrung
Maximaler Bewehrungsgrad
Minimaler Schubbewehrungsgrad 20.0 % 0.0 % 0.0 % 0.0 % 0.0 % Betondeckung nach Norm ANORDNUNG DER GRUNDBEWEHRUNG - OBEN (-z) Anzahl der Bahnen Achsmaßdeckungen Bewehrungsrichtungen d-1: 8.00, d-2: 9.00 cm Phi-1: 0.000°, Phi-2: 90.000° Bewehrungsfläche As-1,-z (oben): 0.00, As-2,-z (oben): 0.00 cm²/m ANORDNUNG DER GRUNDBEWEHRUNG - UNTEN (+z) Anzahl der Bahnen Achsmaßdeckungen Bewehrungsrichtungen Bewehrungsfläche d-1: 9.00, d-2: 10.00 cm Phi-1: 0.000°, Phi-2: 90.000° As-1,+z (unten): 0.00, As-2,+z (unten): 0.00 cm²/m LÄNGSBEWEHRUNG FÜR QUERKRAFTNACHWEIS EINSTELLUNGEN ZU EN 1992-1-1:2004/A1:2014
Mindestlängsbewehrung für Platten nach 9.3.1
Mindestlängsbewehrung für Wände nach 9.6
Mindestschubbewehrung
Begrenzung der Drucksone
Veränderliche Druckstrebenneigung - Min
Veränderliche Druckstrebenneigung - Max
Teilsicherheitsbeiwert -Teilsicherheitsbeiwert --21.801 ° 45.000 ° ST+V 1.15, AU 1.00, GZG 1.00 ST+V 1.50, AU 1.30, GZG 1.00 ST-V 1.50, AU 0.40 ° GZG 1.00 ° GZ

ST+V 1.00, AU 0.85, GZG 1.00

■ 2 1 Erforderliche Bewehrung Gesamt

Fläche	Punkt Nr.	Punkt-Koordinaten [m]			Erford. Bewehrung	Basis		Zusätzliche Bewehrung			Anmer-	
Nr.		X	Υ	Z	Symbol	GZT		ewehr.	Erforderlich	Vorhanden	Einheit	kungen
13	N1529 - E1598	-0.827	-2.884	0.000	a _{s,1,-z(oben)}	52.	41	0.00	52.41		- cm²/m	
11	N9638	-1.700	-2.944		a _{s,2,-z} (oben)	15.	17	0.00	15.17		- cm²/m	
43	N5133 - E5543	0.418	2.971		a _{s,1,+z} (unten)	97.	82	0.00	97.82		- cm ² /m	
41	N1815	0.155	0.476	0.000	a _{s,2,+z} (unten)	75.	28	0.00	75.28		- cm²/m	
44	N1760 - E5762	1.934	9.097	0.000	a _{sw}	79.	53	-/-	-		- cm ² /m ²	

RFEM 5.11.02 - Allgemeine 3D-Tragwerke nach FEM

T05 0075-3482 Ver 00 - Approved - Exported from DMS: 2018-05-28 by SEYAS

RESTRICTED

Ziviltechnikerbüro Dipl.-Ing. Josef Schelmberger

Lassallestraße 7a / Unit 3 / Top 6, 1020 Wien

Tel: 1/3306191-0 zt-buero@schelmberger.at

RF-BetonM2

Modell: V150-4.0/4.2 MW, Mk3E

14.05.2018

In Z-Richtung

Frforderliche Bewehrung a_{s,1,+z (unten)}

RF-BETON Flächen FA1 Stahlbeton-Bemessung Flächen Erforderliche Bewehrung a-s,1,+z (unten) Werte: a-s,1,+z (unten) [cm^2/m]

Erforderliche Bewehrung

[cm²/m]

Max:

Min:

a-s,1,+z (unten)

97.82

88.92

80.03

71.14

62.25

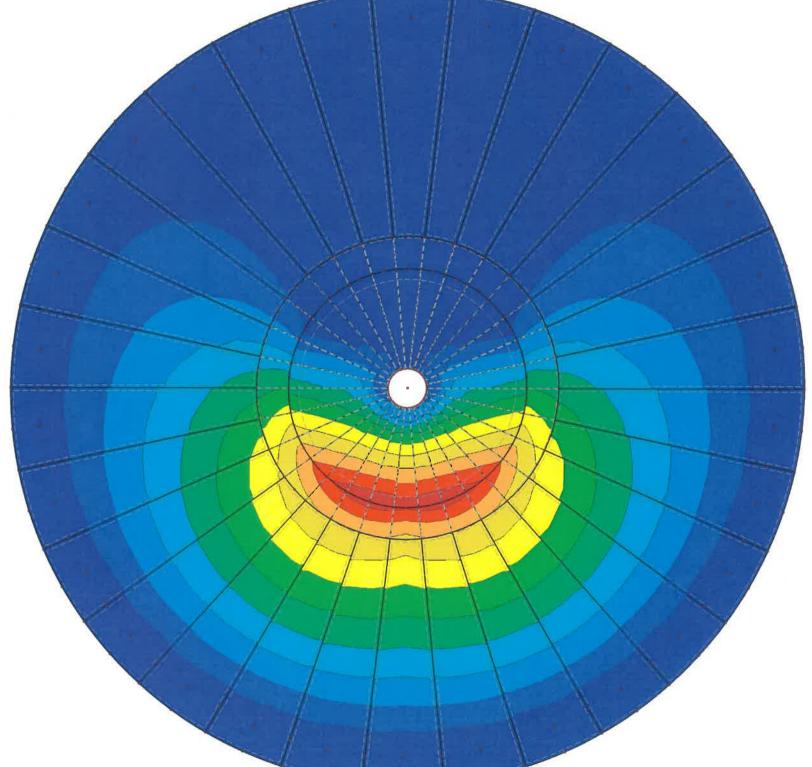
53.35

44.46

35.57

26.68

17.78


8.89

0.00

97.82

0.00

Ergebnisse auf Flächen des Typs "Starr" ausgeblendet. Flächen Max a-s,1,+z (unten): 97.82, Min a-s,1,+z (unten): 0.00 [cm²/m]

1899 mm

www.dlubal.com

RFEM 5.11.02 - Allgemeine 3D-Tragwerke nach FEM

T05 0075-3482 Ver 00 - Approved - Exported from DMS: 2018-05-28 by SEYAS

Lassallestraße 7a / Unit 3 / Top 6, 1020 Wien

Tel: 1/3306191-0 zt-buero@schelmberger.at

RF-BetonM2

Modell: V150-4.0/4.2 MW, Mk3E

14.05.2018

In Z-Richtung

Frforderliche Bewehrung a_{s,1,-z (oben)} Erforderliche Bewehrung a

Erforderliche Bewehrung a-s,1,-z (oben)

52.41

47.64

42.88

38.12

33.35

28.59

23.82

19.06

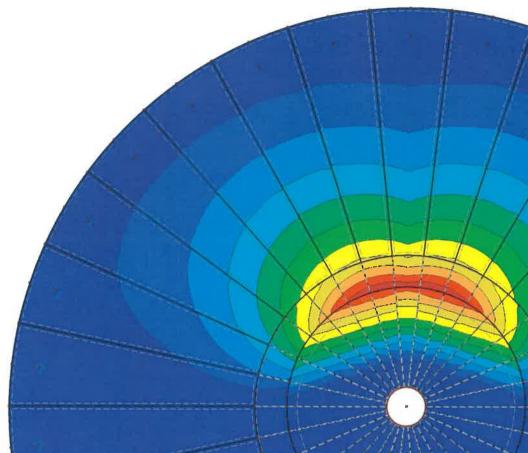
14.29

9.53

4.76

0.00

52.41


0.00

[cm²/m]

Max:

Min:

Ergebnisse auf Flächen des Typs "Starr" ausgeblendet. Flächen Max a-s,1,-z (oben): 52.41, Min a-s,1,-z (oben): 0.00 [cm²/m]

1899 mm

RFEM 5.11.02 - Allgemeine 3D-Tragwerke nach FEM

www.dlubal.com

VESTAS PROPRIETARY NOTICE

75.28

68.43

61.59

54.75

47.90

41.06

34.22

27.37

20.53

13.69

6.84

0.00

75.28

0.00

Erforderliche Bewehrung

[cm²/m]

Max:

Min:

a-s,2,+z (unten)

Ziviltechnikerbüro Dipl.-Ing. Josef Schelmberger

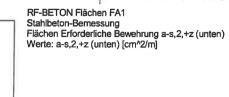
Lassallestraße 7a / Unit 3 / Top 6, 1020 Wien

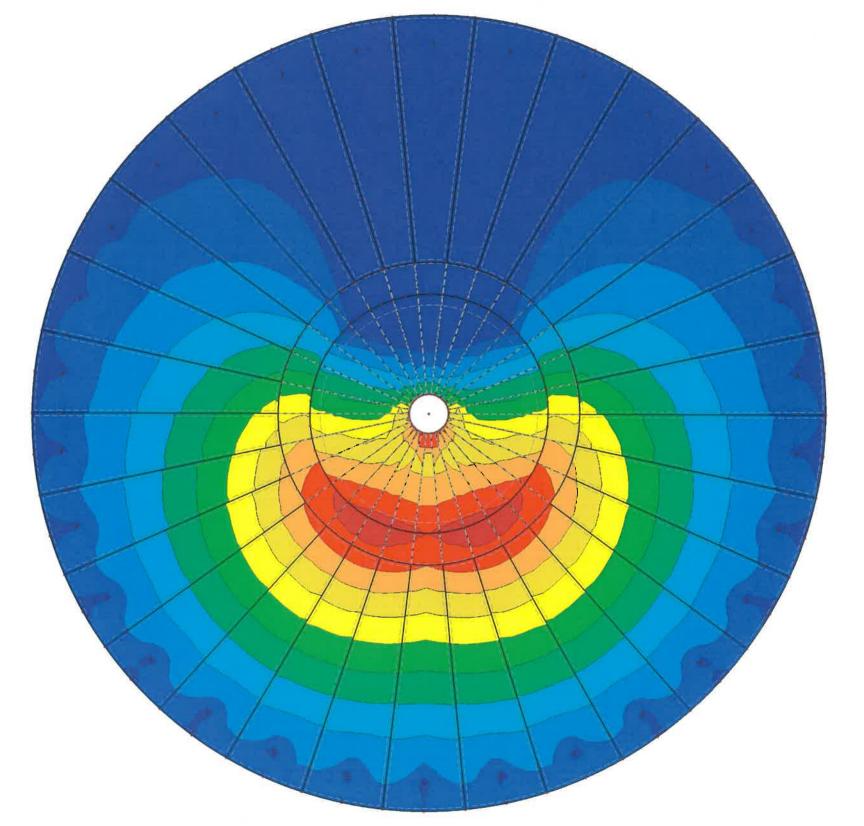
Tel: 1/3306191-0 zt-buero@schelmberger.at

23/28

Datum:

RF-BetonM2


Modell: V150-4.0/4.2 MW, Mk3E


14.05.2018

In Z-Richtung

32

Frforderliche Bewehrung a_{s,2,+z (unten)}

Ergebnisse auf Flächen des Typs "Starr" ausgeblendet. Flächen Max a-s,2,+z (unten): 75.28, Min a-s,2,+z (unten): 0.00 [cm²/m]

1899 mm

RFEM 5.11.02 - Allgemeine 3D-Tragwerke nach FEM

www.dlubal.com

15.17

13.79

12.41

11.03

9.65

8.28

6.90

5.52

4.14

2.76

1.38

0.00

15.17

0.00

Erforderliche Bewehrung a-s,2,-z (oben)

[cm²/m]

Max:

Min:

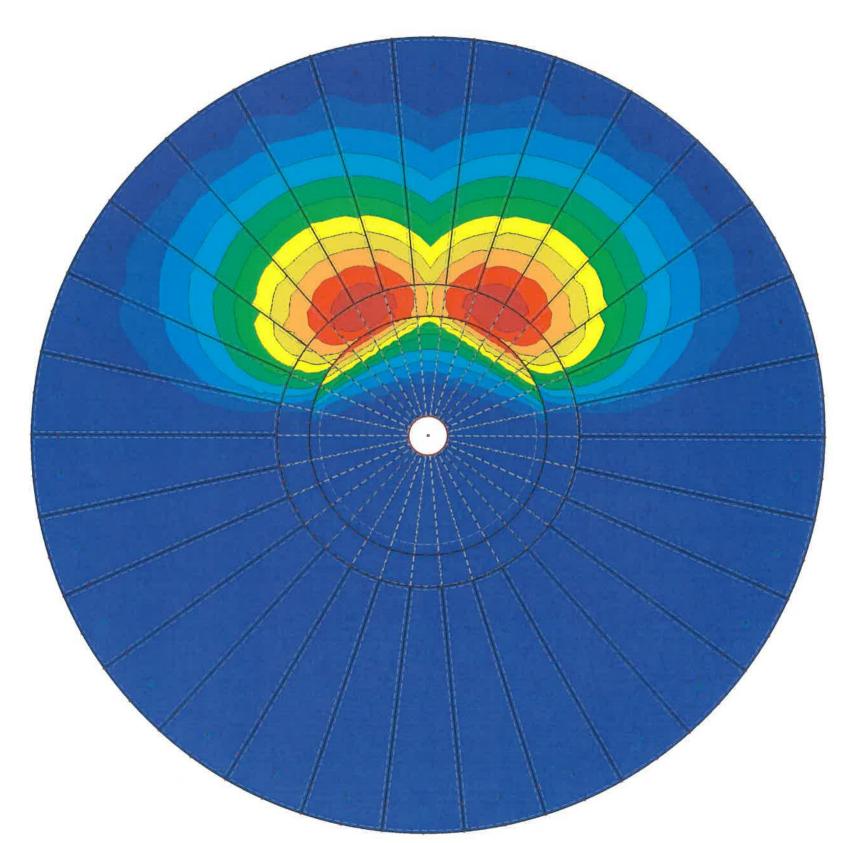
Ziviltechnikerbüro Dipl.-Ing. Josef Schelmberger

Lassallestraße 7a / Unit 3 / Top 6, 1020 Wien

Tel: 1/3306191-0 zt-buero@schelmberger.at

RF-BetonM2

24/28


Modell: V150-4.0/4.2 MW, Mk3E

14.05.2018

In Z-Richtung

Frforderliche Bewehrung a_{s,2,-z (oben)}

RF-BETON Flächen FA1
Stahlbeton-Bernessung
Flächen Erforderliche Bewehrung a-s,2,-z (oben)
Werte: a-s,2,-z (oben) [cm^2/m]

Ergebnisse auf Flächen des Typs "Starr" ausgeblendet. Flächen Max a-s,2,-z (oben): 15.17, Min a-s,2,-z (oben): 0.00 [cm²/m]

1899 mm

RFEM 5.11.02 - Allgemeine 3D-Tragwerke nach FEM

www.dlubal.com

VESTAS PROPRIETARY NOTICE

T05 0075-3482 Ver 00 - Approved - Exported from DMS: 2018-05-28 by SEYAS

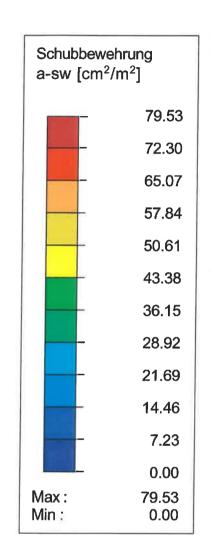
Tel: 1/3306191-0 zt-buero@scheimberger.at

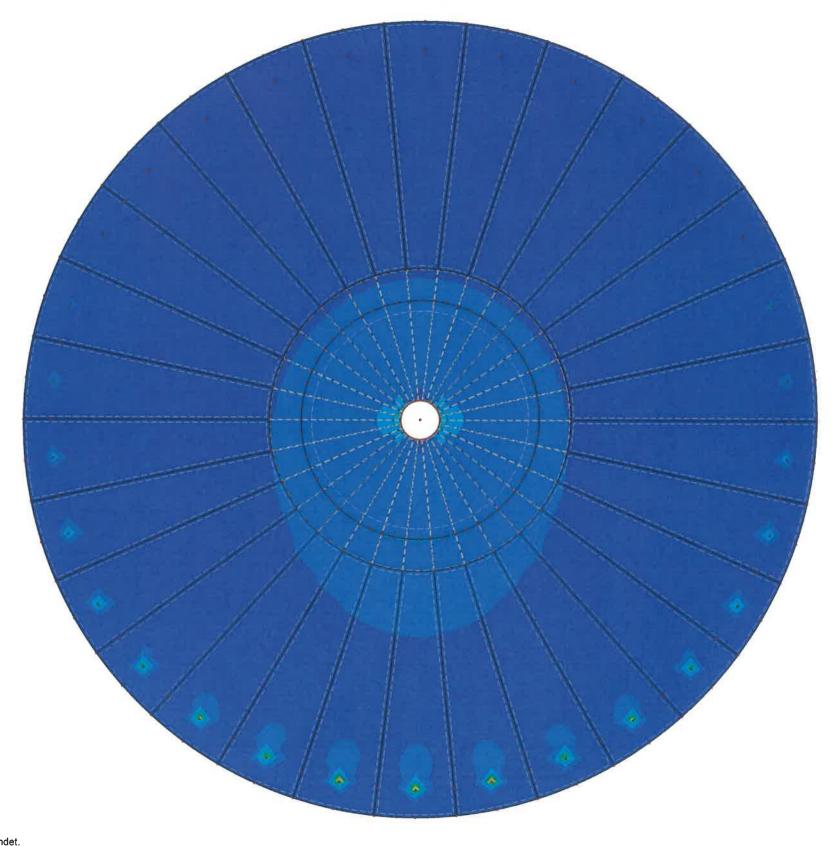
Blatt: RF-BetonM2

Datum:

25/28

Projekt: 101021


Schubbewehrung asw


RF-BETON Flächen FA1 Stahlbeton-Bernessung Flächen Schubbewehrung a-sw Werte: a-sw [cm²2/m²2]

Modell: V150-4.0/4.2 MW, Mk3E

In Z-Richtung

14.05.2018

Ergebnisse auf Flächen des Typs "Starr" ausgeblendet. Flächen Max a-sw: 79.53, Min a-sw: 0.00 [cm²/m²]

1899 mm

RFEM 5.11.02 - Aligemeine 3D-Tragwerke nach FEM

www.dlubal.com

14.05.2018

Ziviltechnikerbüro Dipl.-Ing. Josef Schelmberger

Lassallestraße 7a / Unit 3 / Top 6, 1020 Wien

Tel: 1/3306191-0 zt-buero@schelmberger.at

Blatt: **RF-BETON Stäbe**

Datum:

RE-RETON Stäbe Stahlbetonbemessung von Projekt: 101021 Modell: V150-4.0/4.2 MW, Mk3E

1.1 Basisangaben Stahlbetonbemessung nach

EN 1992-1-1:2004/A1:2014 TRAGFÄHIGKEIT DLC 6.2_oAT_Traglast_g16 Ständig und vorübergehend DLC 1.4_oAT_Traglast_g16 Ständig und vorübergehend DLC 6.2_oAT_Traglast_g18 Ständig und vorübergehend DLC 1.4_oAT_Traglast_g18 Ständig und vorübergehend Zu bemessende Lastkombinationen LK1 LK2 LK6 LK7

Einstellungen der Bemessungssituation für GZG-Nachwe Lastkombination: Charakteristisch mit Direktlast Charakteristisch mit Zwangsverformung Häufig Quasi-ständig Nachweise: -Nachweise: -Nachweise: k₁*f_{ck}, k₂*f_{ck}, k₃*f_{yk}, k₄*f_{yk}, w_k, u₁ Verformung beziehen auf: Verschobene Stab- bzw. Stabsatzenden

1.1 Einstellungen - Nichtlineare Berechnung (Zustand II)

Zustand II - im Grenzzustand TRAGFÄHIGKEIT erfassen Zustand II - im Grenzzustand GEBRAUCHSTAUGLICHKEIT erfassen: Nichtlineare Berechnung für Brandschutz erfassen

1.2 Materialien

Mat		Materialbezeichnung	
Nr.	Beton-Festigkeitsklasse	Betonstahl	Kommentar
4	Beton C25/30	B 550 S (A)	

1.3 Querschnitte

Quersch.	Mat.	Querschnitts-		
Nr.	Nr.	bezeichnung	Anmerkungen	Kommentar
2	4 Kreis 650		BP Ø65	Control of the second of the s

■ 1.6 Bewehrungssatz Nr. 1 - Pfähle

Angewendet auf Stabsätze: Alie (1-30) LÄNGSBEWEHRUNG Mögliche Durchmesser: Min. Abstand für erste Lage: 20.0 mm 20.0 mm Gerade Verankerungstyp: Stahloberfläche: Bewehrungsstaffellung: BÜGELBEWEHRUNG Mögliche Durchmesser: Anzahl der Schnitte: Verankerungstyp:

BEWEHRUNGSANORDNUNG Betondeckung nach Norm Betondeckung c-oben: Betondeckung c-unten Betondeckung c-seitig: Bewehrungsanordnung: Torsionsbewehrung über den Umfang verteilen Berücksichtigte Schnittgrößen:

MINDESTBEWEHRUNG

Mindest Bewehrungsfläche (min A-s,oben):
Mindestbewehrungsfläche (min A-s,unten):
Mindestbewehrung nach Norm:
Mindestschubbewehrung nach Norm:
Längsbewehrung für Querkraftnachweis:

SCHUBKRAFT IN DER FUGE Schubfuge vorhanden: Nachweis des Gurtanschlusses bei gegliederten Querschnitte

EINSTELLUNGEN ZU EN 1992-1-1:2004/.
Max. Bewehrungsgrad:
Begrenzung der Druckzone
Teilsicherheit Gamma-c
Teilsicherheit Gamma-s
Abminderungsbeiwert Alpha-cc
Abminderungsbeiwert Alpha-ct
Min. veränderliche Druckstrebenneigung
Max. veränderliche Druckstrebenneigung

EINSTELLUNGEN ZU EN 1992-1-1:2004/A1:2014

Gerippt Keine 10.0 mm

2 Haken Gleiche Abstände

90.0 mm 90.0 mm 90.0 mm Gleichmäßig umlaufend N, V-y, V-z, M-T, M-y, M-z

0.00 cm² 0.00 cm²

Ansatz der erforderlichen Längsbewehrung

8.00 % 8.00 %

ST+V 1.50, AU1.20
ST+V 1.15, AU1.00
ST+V 1.00, AU1.00
ST+V 1.00, AU1.00

21.80 ° 45.00 °

RFEM 5.11.02 - Allgemeine 3D-Tragwerke nach FEM

Lassallestraße 7a / Unit 3 / Top 6, 1020 Wien

Tel: 1/3306191-0 zt-buero@schelmberger.at

Blatt: 1

RF-BETON Stäbe

Datum: 14.05.2018

roiekt: 101021

Modell: V150-4.0/4.2 MW, Mk3E

Pos	Bewehrung	Anza		d _s		As		Länge	x-Stelle [m]		Masse	
Nr.	lage	Stäb	9	[mm]		[cm ²]		[m]	von	bis	[kg]	Anmerkung
absatz Nr.1 - Kreis 650 1 Umlauf	fend	4		20.0		10.57	7,11	20,400	0.000			
Stabsatz Nr.2 - Kreis 650		4	- 1		- 1	12.57		20.400	-0.200	20.200	201.24	
1 Umlauf Stabsatz Nr.3 - Kreis 650	fend	4		20.0		12.57		20.400	-0.200	20.200	201.24	
1 Umlauf	fend	4	1	20.0		12.57		20.400	-0.200	20.200	201.24	
Stabsatz Nr.4 - Kreis 650 1 Umlauf	fond	1 4		20.0		12.57	100					
Stabsatz Nr.5 - Kreis 650		-		20.0		12.57	- 1-	20.400	-0.200	20.200	201.24	
1 Umlauf Stabsatz Nr.6 - Kreis 650	fend	4		20.0		12.57		20.400	-0.200	20.200	201.24	
1 Umlauf	fend	5		20.0		15.71		20.538	-0.338	20.200	253.25	
Stabsatz Nr.7 - Kreis 650 1 Umlauf	fend	1 6		20.0	i i	18.85		20.587	-0.387			
Stabsatz Nr.8 - Kreis 650										20.200	304.63	
1 Umlauf Stabsatz Nr.9 - Kreis 650	end	6	1	20.0		18.85		20.605	-0.405	20.200	304.89	
1 Umlaufe	end	6		20.0		18.85		20.565	-0.365	20.200	304.30	
Stabsatz Nr.10 - Kreis 650 1 Umlaufe	end	5		20.0	- 1	15.71	1	20.552	-0.352	20.200	253.42	
Stabsatz Nr.11 - Kreis 650 1 Umlaufe	and	- 1 4		20.0								
Stabsatz Nr.12 - Kreis 650						12.57		20.400	-0.200	20.200	201.24	
1 Umlaufe tabsatz Nr.13 - Kreis 650	end	4		20.0		12.57	-1	20.400	-0.200	20.200	201.24	
1 Umlaufe	end	4		20.0	- 1	12.57		20.400	-0.200	20.200	201.24	
tabsatz Nr.14 - Kreis 650 1 Umlaufe	end	4	- 1-	20.0		12.57	Te se	20.400	-0.200	20.200		
tabsatz Nr.15 - Kreis 650											201.24	
1 Umlaufe tabsatz Nr.16 - Kreis 650	ena	1 4	, In	20.0		12.57		20.400	-0.200	20.200	201.24	
1 Umlaufe tabsatz Nr.17 - Kreis 650	end	4	- I	20.0	- 1	12.57	- 1	20.400	-0.200	20.200	201.24	
1 Umlaufe	end	1 4		20.0	- 1	12.57	1 5	20.422	-0.200	20.222	201.46	
tabsatz Nr.18 - Kreis 650 1 Umlaufe	and	1 4		20.0	111	12.57						
absatz Nr.19 - Kreis 650								20.460	-0.200	20.260	201.83	
1 Umlaufe tabsatz Nr.20 - Kreis 650	end	4		20.0		12.57		20.495	-0.200	20.295	202.18	
1 Umlaufe	end	4	1	20.0	T	12.57	11	20.525	-0.200	20.325	202.47	
tabsatz Nr.21 - Kreis 650 1 Umlaufe	end	1 4		20.0	1	12.57	1	20.567	-0.218	20.349	202.88	
tabsatz Nr.22 - Kreis 650 1 Umlaufe	and	,										
tabsatz Nr.23 - Kreis 650		4	1	20.0	1	12.57	-	20.595	-0.231	20.363	203.16	
1 Umlaufe tabsatz Nr.24 - Kreis 650	end	4		20.0	- 1	12.57		20.607	-0.238	20.368	203.28	
1 Umlaufe	end	4	1	20.0	-1	12.57		20.602	-0.239	20.363	203.23	
tabsatz Nr.25 - Kreis 650 1 Umlaufe	end	4		20.0	1	12.57		20.581	-0.232			
absatz Nr.26 - Kreis 650					- !					20.349	203.02	
1 Umlaufe absatz Nr.27 - Kreis 650	eno	4		20.0		12.57		20.579	-0.254	20.325	203.00	
1 Umlaufer absatz Nr.28 - Kreis 650	end	4		20.0	1	12.57		20.525	-0.230	20.295	202.47	
1 Umlaufei	ind	4	1	20.0		12.57	1	20.461	-0.201	20.260	201.84	
absatz Nr.29 - Kreis 650 1 Umlaufei		1 4			1		1					
absatz Nr.30 - Kreis 650		4		20.0	1	12.57		20.422	-0.200	20.222	201.46	
1 Umlaufer	nd	4		20.0		12.57		20.400	-0.200	20.200	201.24	

2	2	\/orbondon	e Riigelhewehrung
	_	VOID SIDE	e Blineinewenning

Pos	Anzahl	d₅	Länge	x-Stelle [m]		Abstand	Bügelabmessungen	Anzahí	Masse	
Nr.	Bügel	[mm]	[m]	von bis		s _{ii} [m]	[mm]	Schnitte	[kg]	Anmerkung
tabsatz Nr.1 - Kreis 650										
1 Stabsatz Nr.2 - Kreis 650	51	10.0	20.000	0.000	20.000	0.400	490.0/490.0/118.9	2	54.89 1	13) 155)
2 absatz Nr.3 - Kreis 650	51	10.0	20.000	0.000	20.000	0.400	490.0/490.0/118.9	2	54.89 1	13) 155)
3 absatz Nr.4 - Kreis 650	51	10.0	20.000	0.000	20.000	0.400	490.0/490.0/118.9	2	54.89 1	13) 155)
4 absatz Nr.5 - Kreis 650	62	10.0	20.000	0.000	20.000	0.328	490.0/490.0/118.9	2	66.73 1	55)
5 absatz Nr.6 - Kreis 650	62	10.0	20.000	0.000	20.000	0.328	490.0/490.0/118.9	2	66.73 1	55)
6 absatz Nr.7 - Kreis 650	62	10.0	20.000	0.000	20.000	0.328	490.0/490.0/118.9	2	66.73 1	55)
7	62	10.0	20.000	0.000	20.000	0.328	490.0/490.0/118.9	2	66.73 1	55)
bsatz Nr.8 - Kreis 650	62	10.0	20.000	0.000	20.000	0.328	490.0/490.0/118.9	2	66.73 1	55)
bsatz Nr.9 - Kreis 650	62	10.0	20.000	0.000	20.000	0.328	490.0/490.0/118.9	2	66.73 18	55)
bsatz Nr.10 - Kreis 650	62	10.0	20.000	0.000	20.000	0.328	490.0/490.0/118.9	2	66.73 18	
bsatz Nr.11 - Kreis 650 11 bsatz Nr.12 - Kreis 650	62	10.0	20.000	0.000	20.000	0.328	490.0/490.0/118.9	2	66.73 19	
12	51	10.0	20.000	0.000	20.000	0.400	490.0/490.0/118.9	2	54.89 1	
bsatz Nr.13 - Kreis 650 13 bsatz Nr.14 - Kreis 650	51	10.0	20.000	0.000	20.000	0.400	490.0/490.0/118.9	2	54.89 11	

RFEM 5.11.02 - Allgemeine 3D-Tragwerke nach FEM

RESTRICTED

Ziviltechnikerbüro Dipl.-Ing. Josef Schelmberger

Lassallestraße 7a / Unit 3 / Top 6, 1020 Wien

Tel: 1/3306191-0 zt-buero@schelmberger.at

Seite: Blatt:

RF-BETON Stäbe

Tel: 1/330619

Projekt: 101021

Modell: V150-4.0/4.2 MW, Mk3E

Datum: 14.05.2018

3.2 Vorhandene Bügelbewehrung Pos.- Anzahl da

P08	Anzani	u _s	Lange	x-Stelle [m]		Abstand	Bügelabmessungen	Anzahl	Masse	
Nr.	Bügel	[mm]	[m]	von	bis	s, [m]	[mm]	Schnitte	[kg]	Anmerkung
14	51	10.0	20.000	0.000	20.000	0.400	490.0/490.0/118.9	2		113) 155)
absatz Nr.15 - Kreis 650	51	10.0	20.000	0.000	00.000	0.400				
absatz Nr.16 - Kreis 650		10.0	20.000	0.000	20.000	0.400	490.0/490.0/118.9	2	54.89	113) 155)
16	51	10.0	20.000	0.000	20.000	0.400	490.0/490.0/118.9	2	54 80	113) 155)
absatz Nr.17 - Kreis 650									04.03	110/100/
17 absatz Nr.18 - Kreis 650	51	10.0	20.000	0.000	20.000	0.400	490.0/490.0/118.9	2	54.89	113) 155)
18	51	10.0	20.000	0.000	20.000	0.400	490.0/490.0/118.9	0.1	54.00	440) 455)
absatz Nr.19 - Kreis 650					20.000	0.400 [430.0/490.0/116.9 [2	54.89	113) 155)
19	51	10.0	20.000	0.000	20.000	0.400	490.0/490.0/118.9	2	54.89	113) 155)
absatz Nr.20 - Kreis 650	51	10.0	20.000	0.000	20,000	0.400 /	400 0400 0440 0			
absatz Nr.21 - Kreis 650	01	10.0	20.000	0.000	20.000	0.400	490.0/490.0/118.9	2	54.89	113) 155)
21	51	10.0	20.000	0.000	20.000	0.400	490.0/490.0/118.9	2	54.80	113) 155)
absatz Nr.22 - Kreis 650		40.0	22.22						04.00	110, 100,
22 absatz Nr.23 - Kreis 650	51	10.0	20.000	0.000	20.000	0.400	490.0/490.0/118.9	2	54.89	113) 155)
23	51	10.0	20.000	0.000	20.000	0.400	490.0/490.0/118.9	2	E4 00 I	440) 455)
bsatz Nr.24 - Kreis 650						0.400	190.0410.061	2	54.89	113) 155)
24	51	10.0	20.000	0.000	20.000	0.400	490.0/490.0/118.9	2	54.89	113) 155)
absatz Nr.25 - Kreis 650	51	10.0	20.000	0.000	20,000	0.400				
bsatz Nr.26 - Kreis 650	31	10.0	20.000 [0.000	20.000	0.400	490.0/490.0/118.9	2	54.89	113) 155)
26	51	10.0	20.000	0.000	20.000	0.400	490.0/490.0/118.9	2	54.89	113) 155)
bsatz Nr.27 - Kreis 650		40.0							04.00	110) 100)
27 bsatz Nr.28 - Kreis 650	51	10.0	20.000	0.000	20.000	0.400	490.0/490.0/118.9	2	54.89	113) 155)
28	51	10.0	20.000	0.000	20.000	0.400	490.0/490.0/118.9	0.1	54.00	440) 455)
bsatz Nr.29 - Kreis 650	10.00		20,000	3.335	20.000 }	0.400	490.0/490.0/116.9	2	54.89	113) 155)
29	51	10.0	20.000	0.000	20.000	0.400	490.0/490.0/118.9	2	54.89	113) 155)
bsatz Nr.30 - Kreis 650	51	10.0	20.000	0.000	00.000					
30	51	10.0	20.000	0.000	20.000	0.400	490.0/490.0/118.9	2	54.89	113) 155)